

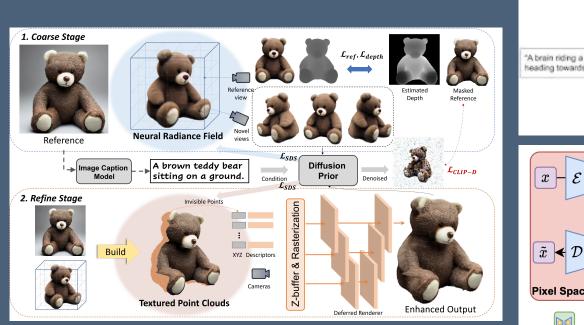
Latent Denoising Deep Diffusion Models (LDDBMs)

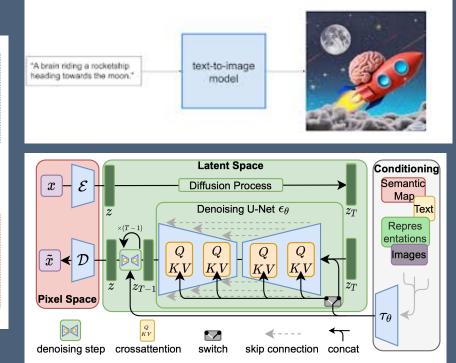
Towards General Modality Translation with Contrastive and Predictive Latent Diffusion Bridge

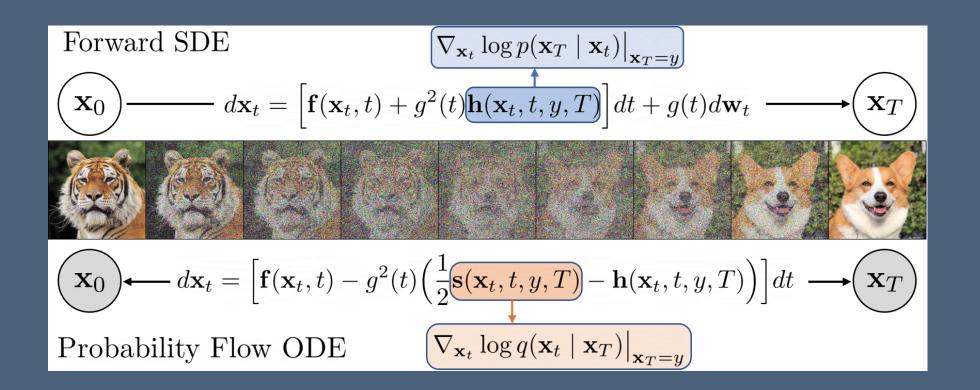
Motivation

Can we design a GENERAL Modality Translation (MT) framework?

- Diffusion Models excel in both single-modality and modality-translation tasks.
- Denoising Diffusion Bridge Models theoretically support MT and showcase state-of-the-art results.
- However, these models require a shared space between modalities.
- U-Nets present **strong inductive biases** towards image data, maintaining modality dependence.



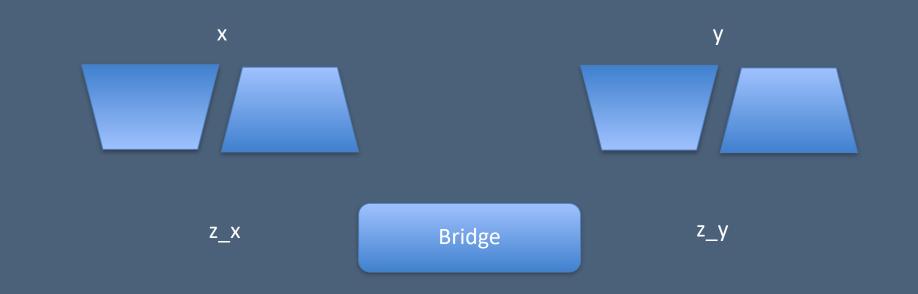




The Simple solution

And it's caveats

- Generate noticeable artefacts and lack highfrequency details in image super-resolution (SR) (Fig. 1, left, "Basic")
- Lack semantic alignment of similar samples across modalities (Fig. 1, center)



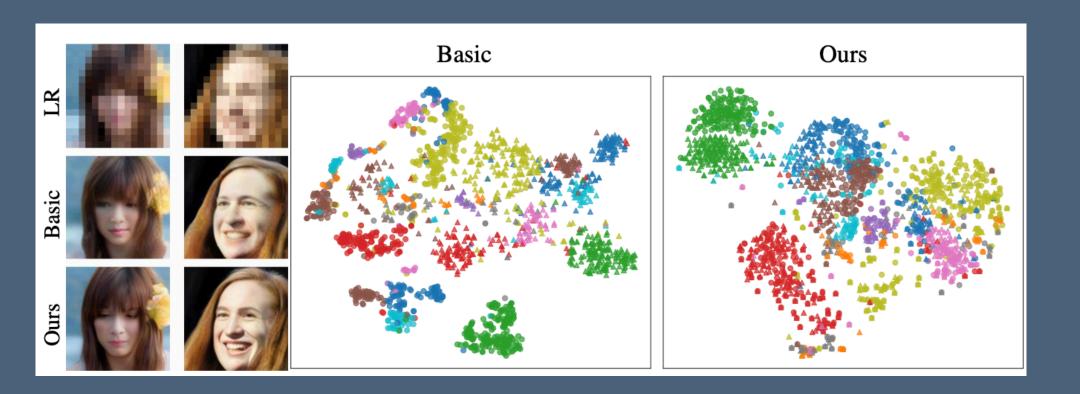
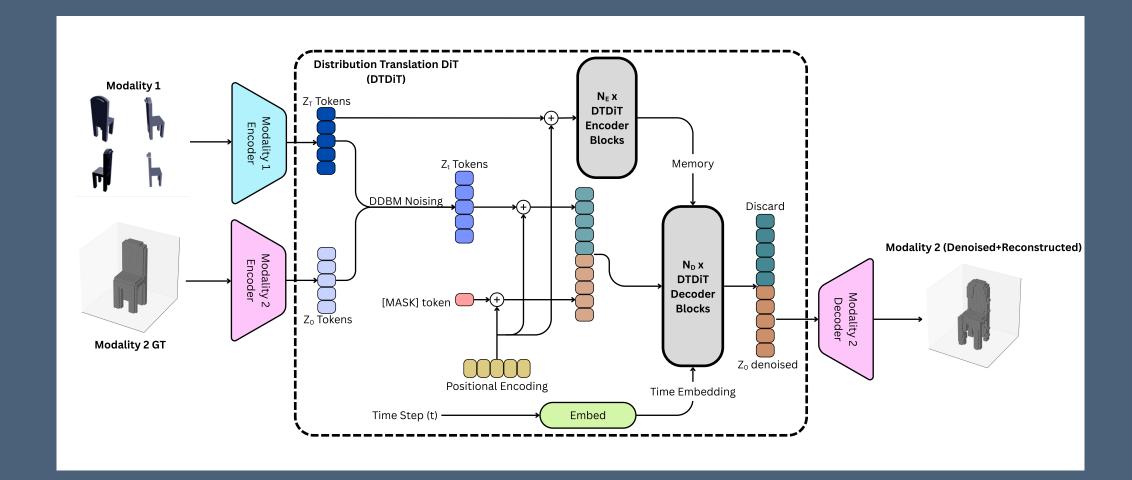


Figure 1: **(Left)** Comparison of our method ("Ours") to the simple solution ("Basic") on a SR task. **(Centre, Right)** t-SNE plots of the "Basic" and "Ours" methods. Circles and triangles denote multi-view images and 3D shapes respectively, coloured by semantic category.

Our Approach

Latent Denoising Diffusion Bridge

- **Core Idea:** Introduce a latent-variable extension of Denoising Diffusion Bridge Models (DDBMs) to connect arbitrarily-dimensioned modalities.
- Contrastive Alignment Loss: Semantic alignment of latent codes
- **Predictive Loss:** Regularise the full translation pipeline to accurately reconstruct the target x, improving overall fidelity.
- Domain Agnostic Architecture: Introduce a novel Transformer Encoder-Decoder based architecture that has been well-known for its language translation superiority
- Iterative Training Procedure: We suggest and empirically prove that training the modality-specific models and the bridge alternately significantly improves performance. This method is inspired by the alternate Generator-Discriminator training in GANs.



$$\mathcal{L}_{ ext{bridge}} = \mathbb{E}_{z_t, z_0, z_T, t} \left[w(t) \left| s_{ heta}(z_t, z_T, t) -
abla_{z_t} \log q(z_t | z_0, z_T) \right|^2
ight]$$

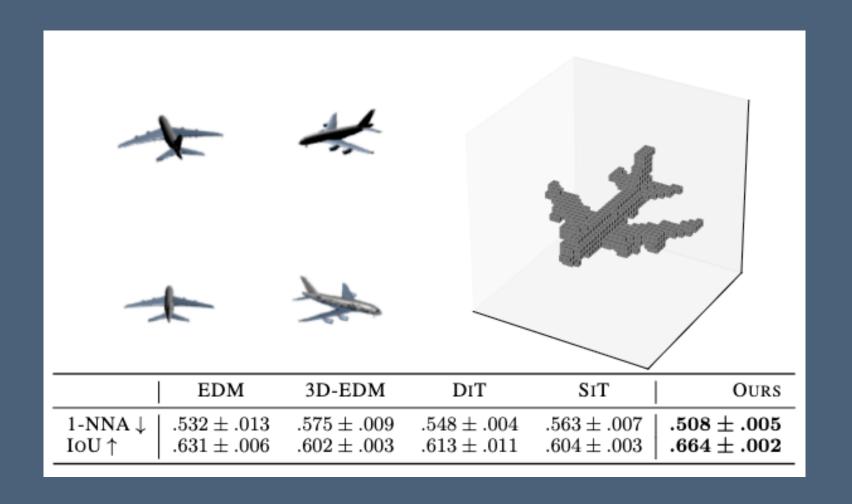
$$\mathcal{L}_{ ext{infoNCE}} = \log rac{\phi(z_0, z_T)}{\phi(z_0, z_T) + \sum_{j=1}^M \phi(z_0, z_T^j)}$$

$$\mathcal{L}_{\text{pred}} = d\left(D_x \circ B \circ E_y(y), x\right)$$

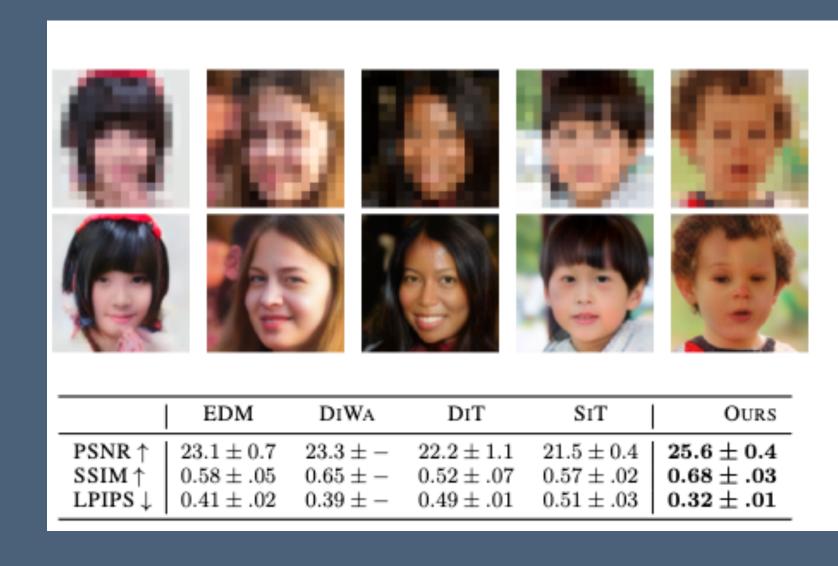
$$\mathcal{L} = \mathcal{L}_{bridge} + \mathcal{L}_{pred} + \mathcal{L}_{infoNCE}$$

Results

Multi-view to 3D-Shape



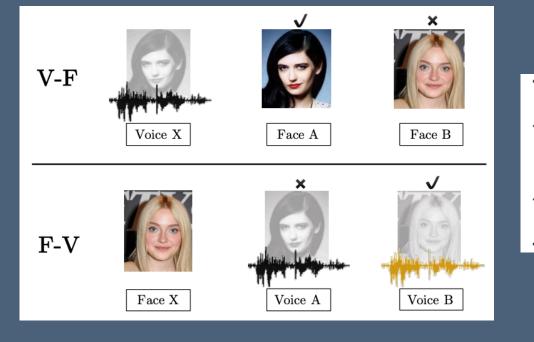
Super Resolution



Edges2Handbag

Method / Metric	FID ↓	Time (s) ↓
LDDBM	4.17	7.8
DDBM	2.93	16.9

Face2Voice, Voice2Face



Method	$\textbf{Face} \rightarrow \textbf{Voice} \uparrow$	$\textbf{Voice} \rightarrow \textbf{Face} \uparrow$
<i>LDDBM</i> SiT	71.2 65.7	75.1 68.3
[40]	79.5	81.0

Ablation Studies

Design Choice Ablations

Losses Ablations

Training Ablations

1	ShapeNet		nuScene		CelebA-HQ		
Component	IoU↑	1-NNA↓	IoU ↑	1-NNA↓	PSNR ↑	SSIM ↑	LPIPS ↓
(1) U-Net	.635	.518	.216	.818	23.2	0.57	0.42
(2) DiT	.613	.548	.208	.825	22.2	0.52	0.49
(3) + Encoder-Decoder	.651	.518	.217	.821	23.4	0.53	0.38
(4) + Spatial Embedding	.658	.522	.224	.812	22.9	0.56	0.41
(5) + [MASK] (Ours)	.664	.508	.233	.807	25.6	0.68	0.32

		$\mathcal{L}_{ ext{\tiny REC}}$	$\mathcal{L}_{ t PRED}$	\mathcal{L}_{REC} + $\mathcal{L}_{\text{INFONCE}}$	$\mathcal{L}_{PRED} + \mathcal{L}_{INFONCE}$
SHAPENET	1-NNA↓ IoU↑	$.625 \pm .003$ $.609 \pm .007$	$.522 \pm .002$ $.643 \pm .005$	$.578 \pm .004$ $.627 \pm .007$	$.508 \pm .005 \\ .664 \pm .002$
CELEBA-HQ	PSNR↑ SSIM↑ LPIPS↓	20.5 ± 0.4 $0.49 \pm .03$ $0.62 \pm .04$	23.7 ± 0.3 $0.64 \pm .02$ $0.41 \pm .02$	21.4 ± 0.1 $0.51 \pm .05$ $0.63 \pm .03$	$25.6 \pm 0.4 \\ 0.68 \pm .03 \\ 0.32 \pm .01$

		TWO-STEP	END-TO-END	ITERATIVE
SHAPENET	1-NNA↓ IoU↑	$\begin{array}{c} .522 \pm .006 \\ .637 \pm .003 \end{array}$	$.517 \pm .003$ $.642 \pm .005$	$.508 \pm .005 \\ .664 \pm .002$
CELEBA-HQ	PSNR ↑ SSIM ↑ LPIPS ↓	23.3 ± 0.6 $0.58 \pm .07$ $0.40 \pm .02$	23.4 ± 0.3 $0.57 \pm .05$ $0.39 \pm .01$	$egin{array}{c} 25.6 \pm 0.4 \ 0.68 \pm .03 \ 0.32 \pm .01 \end{array}$

Conclusions

- · We introduce a method that can achieve better general modality translation
- · Our method supports arbitrary modality pairs
- Easy-to-use method
- Strong empirical results

Thank you!

See you at our poster!

