

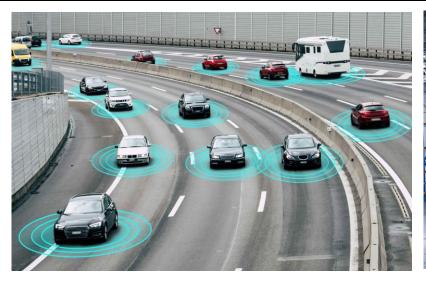
A Safety Guaranteed Hierarchical Multi-Agent Reinforcement Learning Approach Based on Control Barrier Functions for Safety-Critical Systems

Authors: H M Sabbir Ahmad, Ehsan Sabouni, Alexander Wasilkoff, Param Budhraja, Zijian Guo,

Songyuan Zhang, Chuchu Fan, Christos G. Cassandras, Wenchao Li

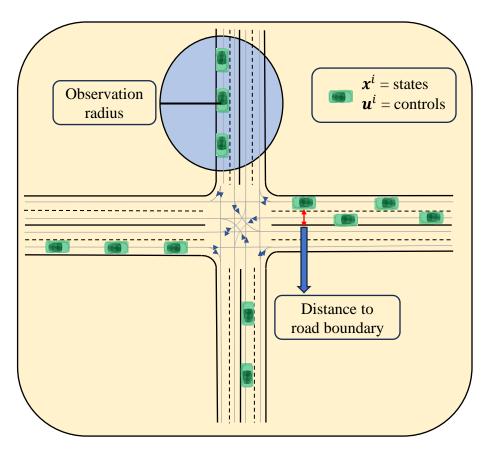
Date: 11/06/2025

Motivation



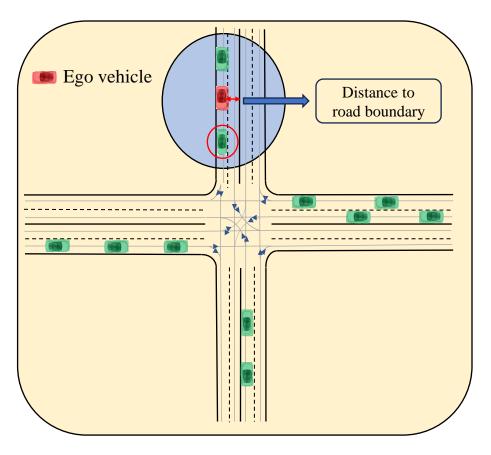
- Safety-critical autonomous systems are growing with advances in machine learning, computing, communication and sensing technologies.
- Examples: robotic systems e.g. ground robots, unmanned aerial vehicles (UAVs), autonomous underwater vehicles (AUVs), and self-driving cars to name a few.
- Safety critical systems: i. inter agent safety and ii. environment safety.

Problem Formulation - I



- A fully cooperative multi-agent safety-critical system setting.
- A finite but arbitrary number of agents.
- Agent dynamics: $\mathbf{x}_{t+1}^i = f(\mathbf{x}_t^i, \mathbf{u}_t^i), \mathbf{x}^i \in \mathcal{X}^i$ and $\mathbf{u}^i \in \mathcal{U}^i$ are states and controls.
- The environment state is denoted by $x^e \in X^e$.
- Stage cost agent of agent i is denoted as $l^i(\mathbf{x}^i, \mathbf{u}^i)$ and the total stage cost is: $l(\mathbf{x}, \mathbf{u}) = \sum_{i=1,...,N} l^i(\mathbf{x}^i, \mathbf{u}^i)$.
- Partially observability: $o^i \in O^i \subseteq \mathcal{X}$.

Problem Formulation - II



- Agent specific safety functions $\{b_j^i(\boldsymbol{o}^i)\}, j \in \mathcal{N}^i(\boldsymbol{o}^i), \mathcal{N}^i(\boldsymbol{o}^i)$ is a finite set.
- Thus, our safety-constrained cooperative game is expressed as follows:

$$\min_{\pi_1,...\pi_N} \mathbb{E}_{\tau \sim (\pi_1,...,\pi_N)} \left[\sum_{t=0}^{\infty} \gamma^t l(\boldsymbol{x}_t, \boldsymbol{u}_t) \right]$$
Subject to: $b_j^i(\boldsymbol{o}_t^i) \geq 0$, $\forall i, \forall j \in \mathcal{N}^i(\boldsymbol{o}_t^i)$, $\forall t \geq 0$

Existing Works

- Model Predictive Control [1], [2].
- Multi-Agent Reinforcement Learning [3].
- Multi-Agent Constrained Policy Optimization [4].
- RL with Safe Control [5].

Our approach: A Hierarchical Multi-Agent Reinforcement Learning Approach using CBF based Skills (HMARL-CBF).

- 1. A. Carron, D. Saccani, L. Fagiano and M. N. Zeilinger, "Multi-agent Distributed Model Predictive Control with Connectivity Constraint," IFAC PapersOnLine, vol. 56, no. 2, pp. 3806-3811, 2023.
- 2. P. Wang and B. Ding, "A synthesis approach of distributed model predictive control for homogeneous multi-agent system with collision avoidance," *International Journal Control*, vol. 87, no. 1, pp. 52-63, 2014.
- 3. R. Lowe, Y. Wu, A. Tamar, et al., "Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments," Advances in Neural Information Processing Systems (NeurIPS), 2017.
- 4. Y. Zhao, Y. Yang, Z. Lu, W. Zhou and H. Li, "Multi-Agent First Order Constrained Optimization in Policy Space," in *Proceedings of the 37th Conference on Neural Information Processing Systems (NeurIPS 2023)*, 2023.
- 5. Y. Cheng, P. Zhao and N. Hovakimyan, "Safe and efficient reinforcement learning using disturbance-observer-based control barrier functions," in *Proc. 5th Annual Conference on Learning for Dynamics and Control (L4DC)*, 2023, pp. 104-115

HMARL-CBF

Safety-constrained cooperative game:

$$\min_{\boldsymbol{\pi}_{1},\dots\boldsymbol{\pi}_{N}} \mathbb{E}_{\boldsymbol{\tau} \sim (\boldsymbol{\pi}_{1},\dots,\boldsymbol{\pi}_{N})} \left[\sum_{t=0}^{\infty} \gamma^{t} l(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}) \right]$$
 Subject to: $\mathbb{E} \left[\min \left\{ b_{j}^{i} (\boldsymbol{o}^{i}), \boldsymbol{0} \right\} \right] \geq 0, \forall i \in \mathcal{N},$ $j \in \mathcal{N}^{i} (\boldsymbol{o}^{i}), \forall t \geq 0$

Hierarchical Policy Learning

High-Level Problem

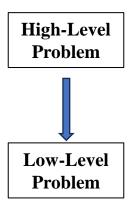
Learning joint cooperative behavior using skills.

Low-Level Problem

Learning the agent skills.

HMARL-CBF

Hierarchical Policy Learning



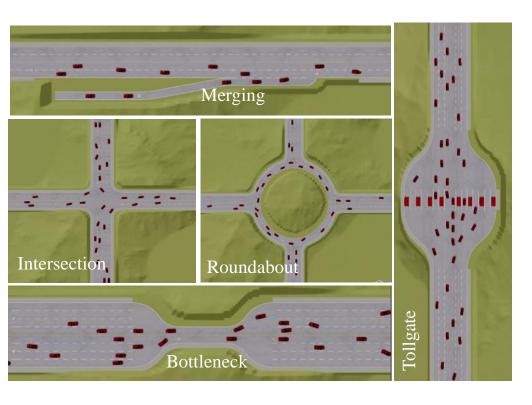
- Solve the Unconstrained Problem minimize the total discounted cost
- Learns a feedback policy that maps to skills of agents.

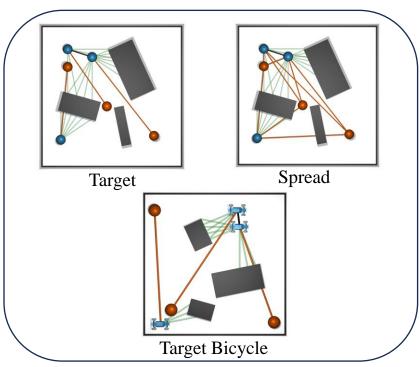
- Agent-Wise Constrained Problem solved using CBFs to learn the skill policy.
- The constraints correspond to safety execution.

Remarks

- High level policy optimization focuses on coordination.
- High level problem is unconstrained and solved in lower dimensional latent space reduced sample complexity.
- Safety is enforced locally through agent-wise constrained problems.
- Shared low-level Agent-wise problems assuming homogeneity scalability, transferability and generalizability.

Results - Environment (METADRIVE)



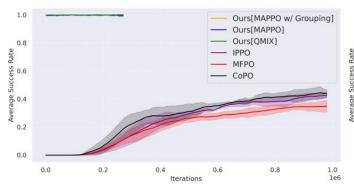


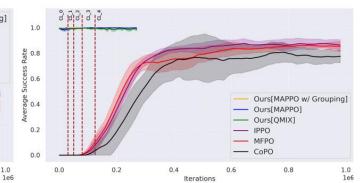
Results - Training

Merging Environment

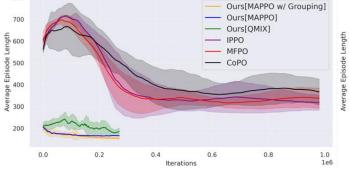
Roundabout Environment

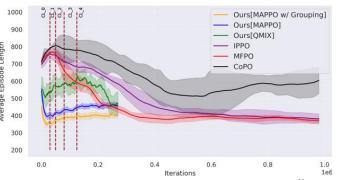
Success Rate





Average Travel Time





Conclusion

- Propose HMARL-CBF, a hierarchical MARL method combining high-level skill selection with low-level safe execution via CBFs, learnt jointly without posing additional sample complexity.
- Our approach guarantees safety during training and evaluation.
- The framework is scalable to a large number of agents.

