

PhysDiff-VTON: Cross-Domain Physics Modeling and Trajectory Optimization for Virtual Try-On

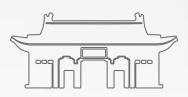
Shibin Mei, Bingbing Ni,

2025/10/19

Paper ID: 12374

饮水思源•爱国荣校

01 **Motivation** 02 Method 03


Experiments Conclusion

04

The Dual Challenges of Virtual Try-On

Geometric Implausibility:

- Rigid warping (e.g., TPS) fails to model complex fabric dynamics.
- Results in unnatural wrinkles and stretching.

Texture Erosion:

- Iterative denoising in diffusion models smears high-frequency details
- Loss of patterns, text, and fine textures

badly warped garment

text becomes blurry

Our Contributions: A Physics-Integrated Framework

- ➤ Physics-Aware Deformation : A pose-guided deformable warping module that simulates strain-dependent fabric dynamics.
- > Spectral Fidelity Preservation : A wavelet-enhanced feature decomposition to explicitly preserve high-frequency texture details.
- > Trajectory Optimization (PRPO): A novel sampling strategy that optimizes the denoising path for spatiotemporal coherence.

The PhysDiff-VTON Framework

Inputs: Person Image (I^p) , Garment Image (I^g) , Pose Map (P)

Three Core Modules:

- Pose-Guided Deformable Warping
- Wavelet-Enhanced UNet
- PRPO Sampler

Pose-Guided Deformable Warping: Simulating Fabric Dynamics

- Predict spatial offsets conditioned on pose semantics.
- Offset prediction:

$$\Delta p = \mathcal{G}(\mathbf{F}_g \oplus (\mathbf{A} \odot \mathbf{E}_p))$$

• Deformable convolution:

$$\tilde{\mathbf{F}}_g(x) = \sum_{k=1}^K w_k \cdot \mathbf{F}_g(x + p_k + \Delta p_k)$$

Wavelet-Enhanced Texture Preservation

- Explicitly decompose and reinforce frequency components.
- Wavelet transformation:

$$\{LL, LH, HL, HH\} = DWT(X)$$

• Frequency-Gated Attention:

$$\mathbf{A} = \sigma(\mathbf{Conv}_1(\mathbf{GN}(\mathbf{Conv}_2(\mathbf{Concat}(\mathbf{LL}, \mathbf{LH}, \mathbf{HL}, \mathbf{HH}))))$$

• Final Feature:

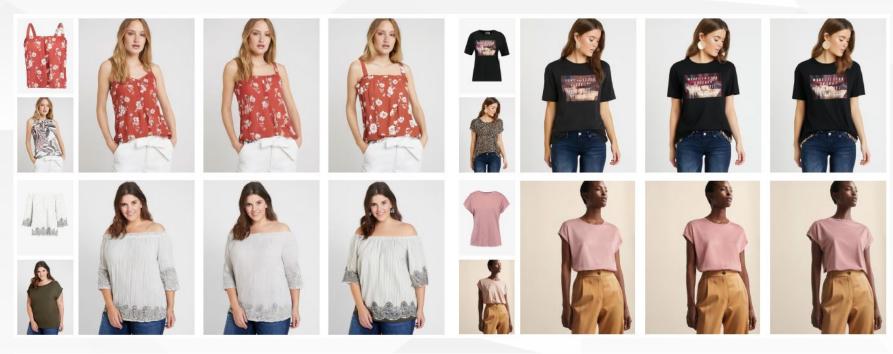
$$\tilde{\mathbf{X}} = \mathbf{X} + \mathbf{A} \odot \mathbf{X}$$

Trajectory Optimization (PRPO)

 Reformulate sampling as a variational problem minimizing an "Action Functional".

$$\mathcal{S}[x(t)] = \underbrace{\int_0^T \|s_\theta(x(t),t) - \nabla_x \log q_t(x(t))\|^2 dt}_{\text{Dynamic Matching}} + \underbrace{\lambda \int_0^T E(x(t)) dt}_{\text{Potential Regularization}} + \underbrace{\sigma \int_0^T \|\xi(t)\|^2 dt}_{\text{Stochastic Control}},$$

- Three Potentials:
- ✓ Temporal Smoothness: For coherent wrinkle formation.
- ✓ Spatial TV: For piecewise smoothness and sharp edges.
- ✓ Multi-scale Similarity: For structural consistency.



Experiments

Dataset	VITON-HD				DressCode						
Method	LPIPS ↓	SSIM ↑	FID↓	CLIP-I↑	LPIPS↓	SSIM↑	FID \	CLIP-I↑			
GAN-based methods											
HR-VITON GP-VTON	0.115 0.105	0.883 0.898	9.70 6.43	0.832 0.874	0.112 0.484	0.910 0.780		0.771 0.628			
Diffusion-based methods											
LaDI-VTON DCI-VTON StableVITON IDM-VITON PhysDiff(Ours)	0.156 0.166 0.133 0.102 0.093	0.872 0.856 0.885 0.870 0.881	8.85 8.73 6.52 6.29 6.21	0.834 0.840 0.871 0.883 0.894	0.149 0.162 0.107 0.062 0.055	0.905 0.893 0.910 0.920 0.932	16.54 17.63 14.37 8.64 8.27	0.803 0.777 0.866 0.904 0.918			

Dataset	VITON-HD				DressCode			
Method	LPIPS↓	SSIM↑	FID↓	CLIP-I↑	LPIPS↓	SSIM ↑	FID↓	CLIP-I↑
w/o Deform	0.102	0.873	6.33	0.882	0.069	0.922	8.51	0.898
w/o Wavelet	0.098	0.868	6.24	0.888	0.062	0.916	8.40	0.904
w/o PRPO	0.096	0.875	6.25	0.890	0.059	0.925	8.33	0.912
PhysDiff-VITON	0.093	0.881	6.21	0.894	0.055	0.932	8.27	0.918

Conclusion

Contribution

- Physics-aware deformation via pose-guided warping.
- Texture fidelity via wavelet-enhanced synthesis.
- Coherent generation via potential-regularized path optimization.

Future Work

- Extend to video try-on for temporal consistency.
- Model a wider range of fabric materials dynamically.

Thank you!