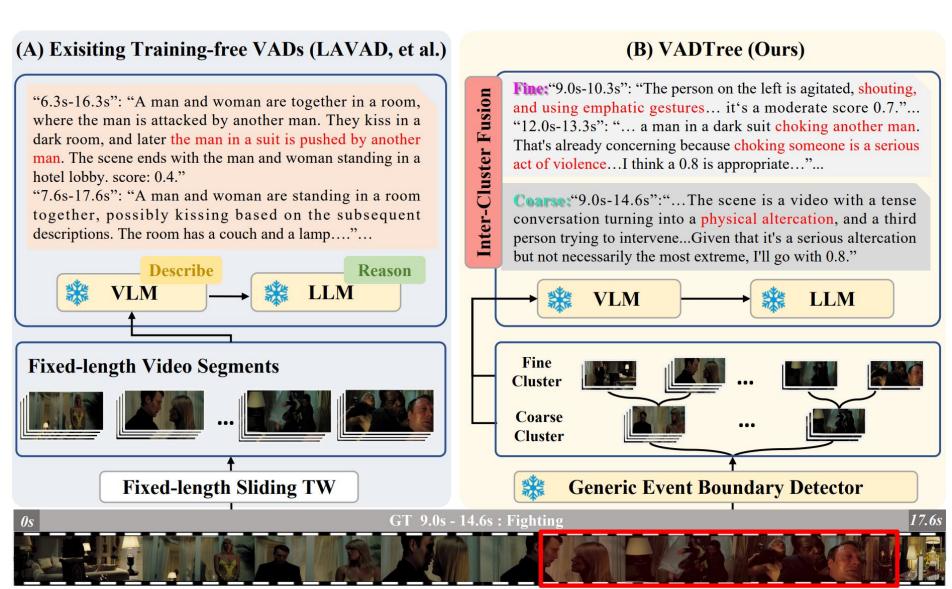


VADTree: Explainable Training-Free Video Anomaly Detection via Hierarchical Granularity-Aware Tree



Wenlong Li, Yifei Xu[∞], Yuan Rao, Zhenhua Wang, Shuiguang Deng

Introduction

- 1. Key Challenges in Video Anomaly Detection
- > Fixed-Length Sampling Limitation: Clash with variable anomaly durations, causing misalignment. and discontinuity.
- > Complex Event Modeling Gap: Conflicts between temporal scales hinder contextual reasoning for extended anomalies.

2. Core Contributions

VADTree(Ours)

Method

RTFM [37]

MGFN [4]

TEVAD [3]

GS-MoE [7

 π -VAD [26]

UR-DMU [26]

VADTree (Ours)

- > VADTree: Tree structure driven video anomaly detection.
- ➤ Hierarchical Granularity-Aware Tree (HGTree):

Constructs multi-granularity event nodes from pre-trained

84.74

 AUC_a (%)

67.95

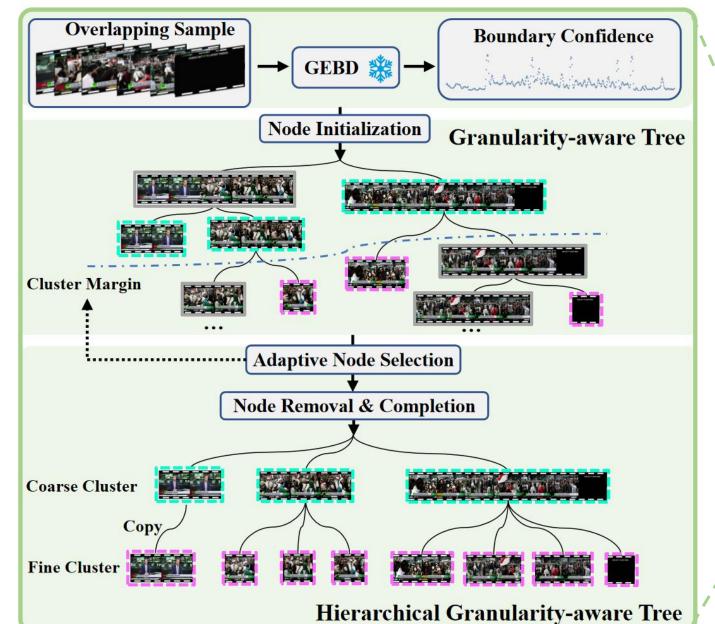
69.54

71.25

67.85

68.26

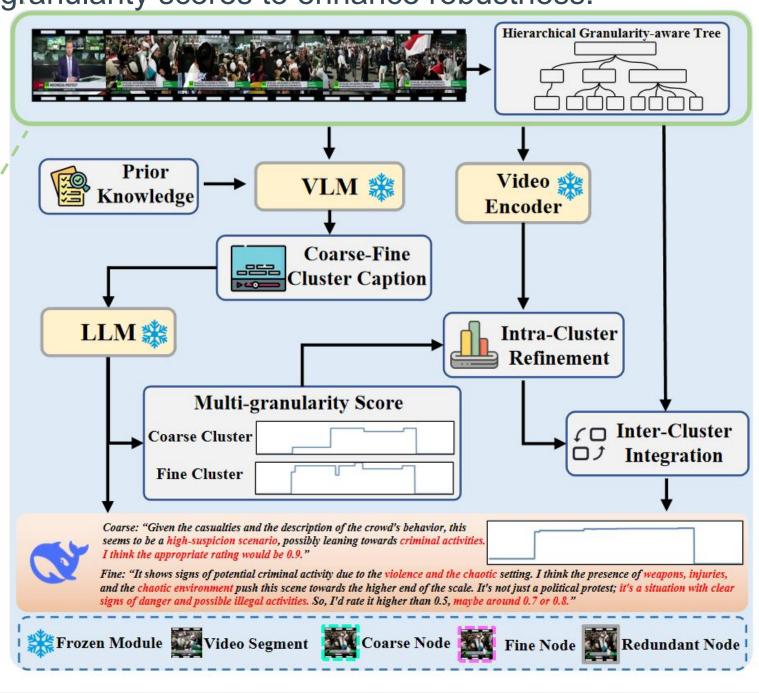

71.41

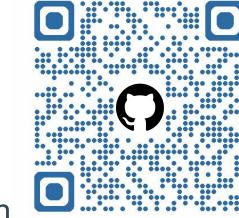

77.86

75.49

knowledge for robust representation.

Hierarchical Granularity-Aware Tree




- > Segmentation Confidence Sequence: Based on pre-trained GEBD model and overlapping sampling.
- > Generic Event Node Initialization: Depth first traversal for representation initialization.
- > Adaptive Node Stratification: Maximization of inter-hierarchical event confidence divergence via K-Means, RemoveDup, and Complete.
- > Sampling Efficiency Statistics: Our sampling method more effectively captures anomalous events of varying lengths and generates fewer segments.

VADTree

- > Prior-infused Node Scoring: Injecting prior knowledge to enhance anomaly perception.
- > Intra-cluster Node Refinement: Refine scoring through intra cluster similarity.
- ➤ Inter-cluster Node Correlation: Integrating multigranularity scores to enhance robustness.

Qualitative Results

Paper

WeChat

Experiments Results

UCF-Crime dataset (AUC)

	•			
Explainable VAD Methods				
VADor [24]	Fine-tuning	88.13		
Holmes-VAD [59]	Fine-tuning	89.51		
Holmes-VAU [60]	Fine-tuning	88.96		
VERA [50]	Verbalized Learning	86.55		
Blip2 [18]	Training-free	46.42		
ZS CLIP [27]	Training-free	53.16		
ZS ImageBind (Image) [12]	Training-free	53.65		
ZS ImageBind (Video) [12]	Training-free	55.78		
LLaVA-1.5 [20]	Training-free	72.84		
Video-Llama2 [58]	Training-free	74.42		
LAVAD [55]	Training-free	80.28		
SUVAD [11]	Training-free	83.90		
MCANet [9]	Training-free	82.47		
EventVAD [30]	Training-free	82.03		

Supervision

Weakly Supervised

Weakly Supervised

Weakly Supervised

Weakly Supervised

Weakly Supervised

Weakly Supervised

Training-free

Training-free

MSAD dataset

86.65

84.96

86.82

85.78

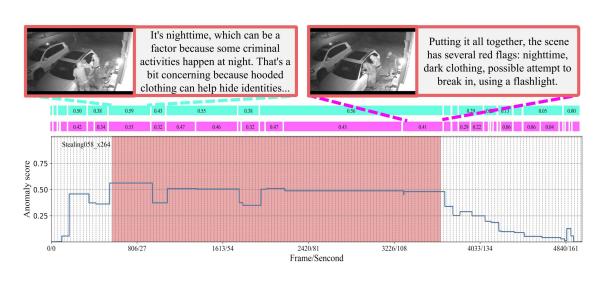
XD-Violence dataset (AP & AUC)

ND-VIOICIICO	dataset (Al	a Au	O)
Expl	ainable VAD Methods		
Holmes-VAD [59]	Fine-tuning	90.67	-
Holmes-VAU [60]	Fine-tuning	87.68	-
VERA [50]	Verbalized Learning	70.54	88.26
Blip2 [18]	Training-free	10.89	29.43
ZS CLIP [27]	Training-free	17.83	38.21
ZS ImageBind (Image) [12]	Training-free	27.25	58.81
ZS ImageBind (Video) [12]	Training-free	25.36	55.06
LLaVA-1.5 [20]	Training-free	50.26	79.62
Video-Llama2 [58]	Training-free	53.57	80.21
LAVAD [55]	Training-free	62.01	85.36
SUVAD [11]	Training-free	70.10	-
MCANet* [9]	Training-free	69.72	87.43
EventVAD [30]	Training-free	64.04	87.51
VADTree (Ours)	Training-free	67.82	90.44
VADTree* (Ours)	Training-free	68.85	90.55

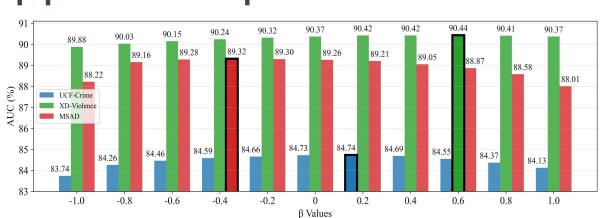
HGTree Ablation $AP(\%) AP_a(\%)$ **AUC** (%) **Cluster Tool** Clusters 80.89 Fine 82.81 Fine 80.85 75.30 K-Means Coarse + Fine 76.68 0.4K-Means Coarse + Fine

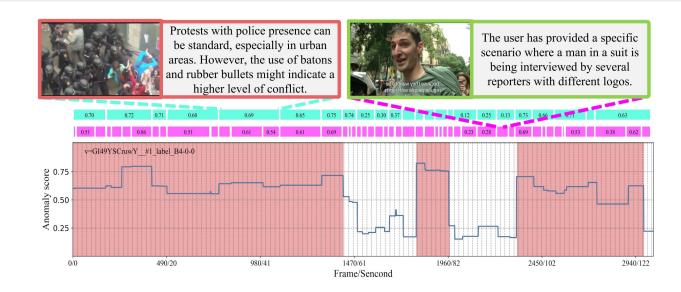
Coarse + Fine

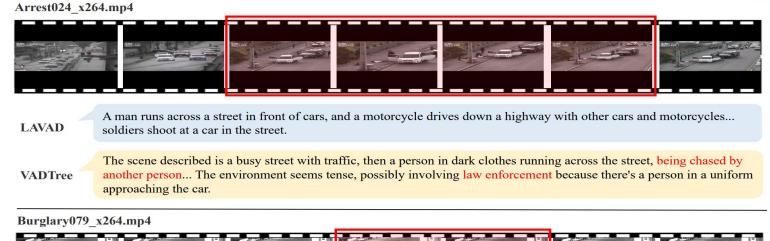
Coarse + Fine

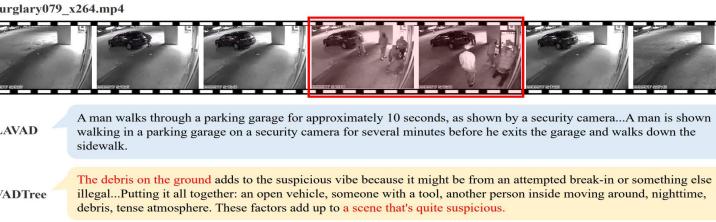

K-Means

- > Comparison with SOTA: Surpassing the best training-free methods. Significantly outperforms weakly supervised methods on MSAD.
- > Ablation Study: Hierarchical structure brings robust performance gains. Prior information effectively enhances anomaly perception.
- > Qualitative Results: VADTree exhibits a superior ability to capture multi-granularity anomalies.


VADTree Ablation


Todule	AUC (%)
IGTree Fine Cluster	71.57
Prior-infused Node Scoring	75.67
Intra-cluster Node Refinement	83.05
Inter-cluster Node Correlation	84.74




β parameter experiment of correlation

