Think Only When You Need with Large Hybrid-Reasoning Models

Lingjie Jiang*1,2, Xun Wu*1, Shaohan Huang1, Qingxiu Dong1,2, Zewen Chi1, Li Dong1,

Xingxing Zhang¹, Tengchao Lv¹, Lei Cui¹, Furu Wei^{1,†}

Microsoft Research¹, Peking University²

^{*} Equal contribuition.

Motivation

• Large Reasoning Models (LRMs) have shown strong improvements in reasoning tasks by generating **extended thinking traces**.

• However, LRMs tend to **overthink**, applying complex reasoning even to **simple queries**, such as a

single word.

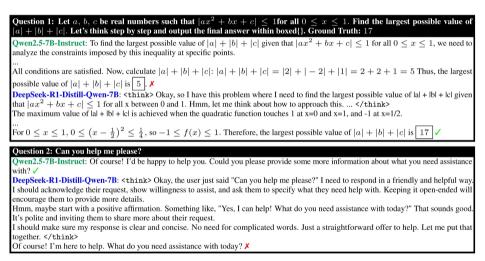


Fig.1 A case of LLM and LRM.

How to build a hybrid thinking system that can achieve an optimal balance between system 2 reasoning and system 1 ability?

Method – Large Hybrid-Reasoning Models

We introduce Large Hybrid-Reasoning Models (LHRMs) that can dynamically choose between:

- Thinking Mode: engage in multi-step reasoning for complex queries
- No-Thinking Mode: respond directly to simple questions

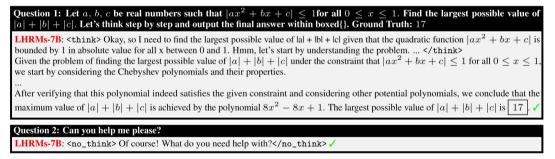


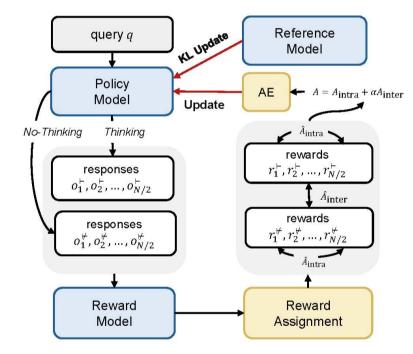
Fig.2 A case of LHRMs-7B

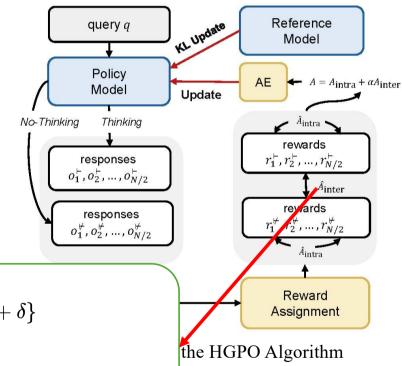
Model Training – Stage II: Hybrid Group Policy Optimization (HGPO)

• Goal: Learn a policy to adaptively select the appropriate reasoning mode (Thinking or No-Thinking) per query, while enhancing helpfulness and reasoning quality.

Method

- For each query, sample responses under both modes
- Use a reward model to evaluate and compare responses
- Combine intra-group (within-mode) and intergroup (between-mode) rewards
- Learn to prefer the most effective reasoning mode per query




Fig.3 Diagram of the HGPO Algorithm

Model Training – Stage II: Hybrid Group Policy Optimization (HGPO)

• Goal: Learn a policy to adaptively select the appropriate reasoning mode (Thinking or No-Thinking) per query, while enhancing helpfulness and reasoning quality.

Method

- For each query, sample responses under both modes
- Use a reward model to evaluate and compare responses

$$r_{ ext{inter}}(o_i^m) = egin{cases} 1, & ext{if } m = rgmax \left\{ar{\mathcal{R}}^{ ext{T}}, ar{\mathcal{R}}^{ ext{NT}} + \delta
ight\} \ 0, & ext{otherwise} \end{cases}$$

Margin δ is a hyperparameter that controls the **trade-off between Thinking and**No-Thinking modes during reward assignment

Evaluating Hybrid Thinking Capability

• We propose a new metric, Hybrid Accuracy (H_{Acc}), which measures the model's ability to correctly choose between Thinking and No-Thinking modes.

Definition

$$H_{acc} = \frac{1}{K} \sum_{i=1}^{K} \mathbb{1}[Equal(m_{gt}, m_p)]$$

- Generate responses in **both modes**
- Score them using a reward model
- Identify the **better-performing mode** $\rightarrow m_{gt}$
- Get the model's **selected mode** $\rightarrow m_p$
- Compute the percentage of queries where $m_{gt} = m_p$

Experiments — Main Results

- LHRMs consistently outperform baseline LLMs, LRMs, and hybrid variants trained only with HFT or HFT+DPO/RFT on both reasoning (math, code) and general capabilities (AlpacaEval, Arena-Hard)
- LHRMs achieve the highest Hybrid Accuracy (H_{Acc}), significantly outperforming other hybrid baselines (HFT, HFT-DPO/RFT), proving that HGPO effectively teaches mode selection

	Туре	МАТН				Code			General			
Methods		MATHER	NIME 24	AMC23	Olympiai	LiveCod	e MBPP	MBPP	Alpaca	Arena	$\mathcal{H}_{\mathrm{acc}}$	Avg.
1.5B size model												
Qwen2.5-Math-1.5B	LLMs	42.4	3.3	22.5	16.7	0.4	16.1	14.3	0.1	1.8	-	13.1
Qwen2.5-1.5B-Instruct	LLMs	51.0	3.3	52.8	38.7	2.2	60.1	51.9	8.8	1.1	-	30.0
Qwen2.5-Math-1.5B-Instruct	LLMs	72.0	6.7	60.0	38.1	3.7	26.7	23.8	2.8	4.7	-	26.5
DeepSeek-R1-Distill-Qwen-1.5B	LRMs	83.9	28.9	62.9	43.3	16.8	54.2	46.3	5.6	2.7	-	38.3
HFT-1.5B	Hybrid	87.8	32.7	75.0	48.9	15.7	54.8	47.4	13.1	6.9	41.4	42.5
HFT-RFT-1.5B	Hybrid	82.2	22.0	67.5	44.1	14.2	49.7	42.6	13.6	8.5	48.1	38.3
HFT-DPO-1.5B	Hybrid	86.8	32.6	75.0	48.7	17.2	50.5	42.6	13.3	6.9	45.8	41.5
LHRMs-1.5B	Hybrid	87.8	35.3	75.0	50.4	17.2	61.1	54.0	16.9	10.4	54.4	45.3
7B size model												
Qwen2.5-Math-7B	LLMs	57.0	13.3	22.5	21.8	6.0	31.5	27.3	2.0	7.0	-	20.9
Owen2.5-7B-Instruct	LLMs	77.0	13.3	52.8	29.1	14.6	79.9	67.5	36.2	25.8	-	44.0
Owen2.5-Math-7B-Instruct	LLMs	82.4	10.0	62.5	41.6	2.6	40.2	34.7	3.8	10.0	-	32.0
DeepSeek-R1-Distill-Qwen-7B	LRMs	92.8	55.5	91.5	58.1	37.6	74.3	64.3	19.1	17.9	-	56.8
HFT-7B	Hybrid	93.6	56.7	95.0	58.5	34.7	70.6	59.8	23.7	14.0	34.2	56.4
HFT-RFT-7B	Hybrid	87.8	55.3	82.5	55.0	35.8	81.0	68.8	28.1	14.0	49.7	56.6
HFT-DPO-7B	Hybrid	93.8	58.7	92.5	60.6	38.8	80.1	68.3	23.3	13.0	37.1	58.9
LHRMs-7B	Hybrid	93.8	66.7	95.0	61.2	38.8	81.5	69.6	35.0	26.0	71.9	63.1

Tab.4 Performance comparison between LHRMS

Experiments — **Ablation study**

Effect of Advantage Estimators

- HGPO supports multiple advantage estimators: **REINFORCE++**, **GRPO**, and **RLOO**
- These estimators all achieve **competitive performance**, indicating that HGPO is **robust to the choice of advantage estimator**

Effect of Margin δ in HGPO

• A larger margin δ encourages more use of No-Thinking, shifting the model toward faster responses

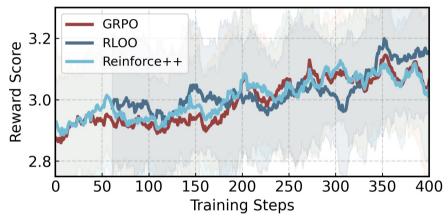
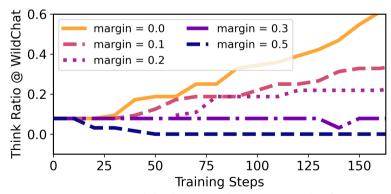



Fig.3 Ablation study on advantage estimators.

Fig.4 Ablation study on margin δ

Experiments — Thinking Ratio Study

- Within-domain: LHRMs learn to reduce unnecessary thinking on easier problems, showing adaptive reasoning compared to HFT baselines.
- Across-domain: The model automatically increases reasoning in unseen domains (e.g., code), demonstrating strong generalization and transferability.

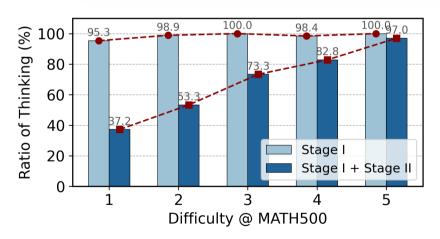


Fig.3 Within-domain (Math)

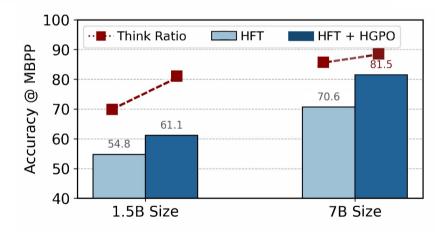


Fig.4 Cross-domain (Code)

Experiments — Efficiency Analysis via Adaptive Thinking

Ocompared to always-thinking HFT counterparts, LHRMs-1.5B and LHRMs-7B reduce average thinking tokens by ~23% and ~25% respectively, while maintaining or slightly improving overall performance.

Model	MATH500	AIME24	AMC23	Olympiad	LiveCodeBench	MBPP	MBPP++	AlpacaEval2.0	ArenaHard2.0	Avg.
1.5B Size Models										
DeepSeek-R1-Distill-Qwen-1.5B HFT-1.5B-Think LHRMs-1.5B	83.9 (4059) 87.8 (4379) 87.8 (3722)	28.9 (13366) 32.7 (13431) 35.3 (13491)	62.9 (9556) 75.0 (10181) 75.0 (9065)	43.3 (10921) 50.0 (10480) 50.4 (9490)	16.8 (13002) 16.8 (13628) 17.2 (9342)	54.2 (4146) 62.2 (5090) 61.1 (3103)	46.3 (4146) 52.9 (5090) 54.0 (3103)	5.6 (4090) 15.9 (1927) 16.9 (1250)	2.7 (8285) 9.3 (10616) 10.4 (5289)	38.3 (7952) 44.7 (8314) 45.3 (6428)
7B Size Models										
DeepSeek-R1-Distill-Qwen-7B HFT-7B-Think LHRMs-7B	92.8 (3558) 93.8 (3658) 93.8 (2616)	55.5 (9488) 56.7 (10778) 66.7 (11031)	91.5 (6255) 95.0 (6456) 95.0 (4976)	58.1 (8635) 59.7 (8376) 61.2 (7540)	37.6 (11669) 38.4 (12046) 38.8 (8432)	74.3 (2824) 80.3 (3251) 81.5 (1906)	64.3 (2824) 68.9 (3251) 69.6 (1906)	19.1 (2209) 30.6 (1731) 35.0 (1086)	17.9 (5282) 23.3 (7442) 26.0 (3416)	56.8 (5860) 60.7 (6332) 63.1 (4768)

Fig.5 Accuracy and Output Length Comparison on Various Benchmarks

Thank you for your attention!