

STaRFormer: Semi-Supervised Task-Informed Representation Learning via Dynamic Attention-Based Regional Masking for Sequential Data

M. Forstenhäusler^{1, 2}, D. Külzer¹, C. Anagnostopoulos², S. Parambath² and N. Weber¹

¹BMW Group, ²University of Glasgow

Motivation

- Intent prediction from user-trajectory recorded with a Digital Key (DK) in the near vicinity of the vehicle.
- General assumptions for sequential modelling [1]:
 - fully observed
 - stationary
 - sampled at regular intervals
- In real-world scenarios → these assumptions often do not apply [2].
- Digital Keys Trajectory (DKT) data collection results in:
 - Non-stationary sequential data
 - ~79% is non-stationary, confirmed by KPSS and ADF tests.
 - Irregularly sampled sequential data,
 - Ultra-Wideband (UWB) ranging collects measurements at irregularly sampled time intervals.

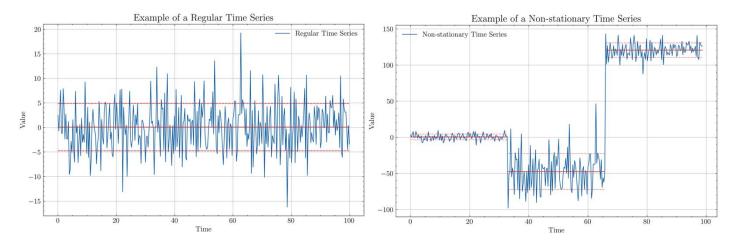
BMW Digital Key

Use-Case Demo

[1] Zekun Li, Shiyang Li, and Xifeng Yan. Time Series as Images: Vision Transformer for Irregularly Sampled Time Series. *Advances in Neural Information Processing Systems*, 36:49187–49204, December 2023.

[2] Luke Bermingham and Ickjai Lee. A probabilistic stop and move classifier for noisy GPS trajectories. Data Min. Knowl. Discov., 32(6):1634–1662, November 2018. ISSN 1384-5810. doi: 10.1007/s10618-018-0568-8.

Motivation & Approach



Regular time series vs non-stationary time series.

Example of an irregular sampled time series.

Goal

- Robust modeling technique for irregularities in time series.
- Supports binary classification (BMW Use-Case) but can easily be extended to other tasks.

Approach

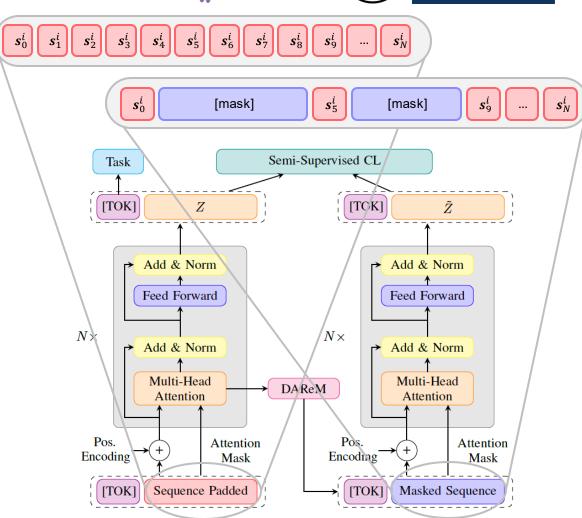
- Create robust latent embeddings to handle irregularities in sequential data.
- Enhance model latent space
 → improve the downstream task performance.

STaRFormer

NEURAL INFORMATION PROCESSING SYSTEMS

University of Glasgow

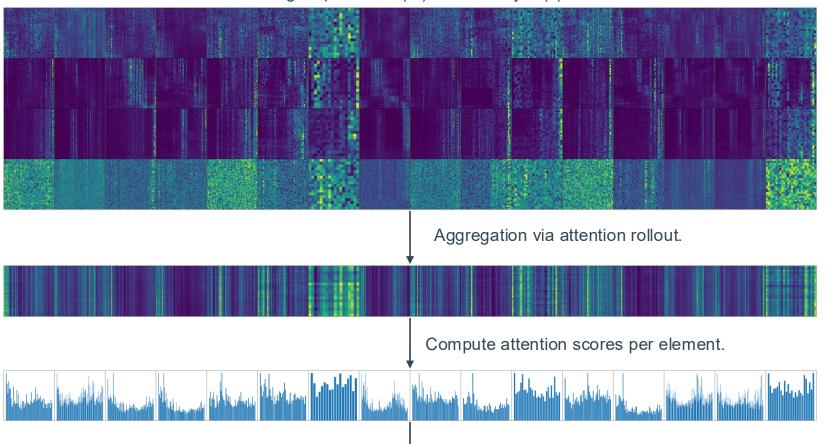
- 1. Encoder-only Transformer as backbone to extract features from sequential data.
- Employ Dynamic Attention-Based Regional Masking (DAReM) to manipulate important task-specific regions within an input sequence.
 - 1. Introduces synthetic variations in statistical properties (non-stationary).
 - 2. Simulates varying sampling frequencies (irregular sampling).
- Employ a novel semi-supervised CL approach which
 maximizes agreement between batch-wise and class-wise
 similarities in the latent space → creates robust taskinformed latent representations.
 - Incorporation of DAReM during training process creates two correlated latent representations → masked and unmasked.



STaRFormer architecture.

STaRFormer – Dynamic Attention-Based Regional Masking (DAReM)

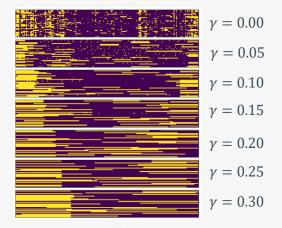
Gathered attention weights per batch (\rightarrow) for each layer (\downarrow) of the transformer.



Creation of regional mask around most important elements.

Creation of regional mask

- φ: determines the total number of elements to mask.
- ξ: determines the number of top-k elements to mask based on the attention scores.
- γ: determines the bounds of the region to mask.



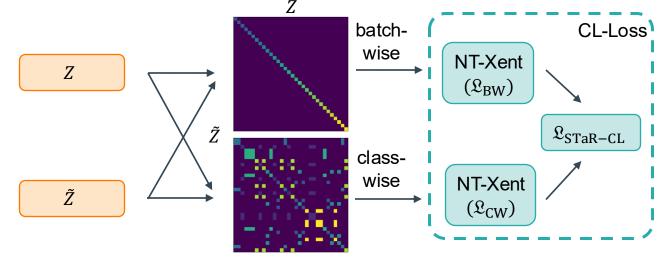
Regional masks with different region parameter γ .

STaRFormer – Semi-Supervised Contrastive Learning (CL)

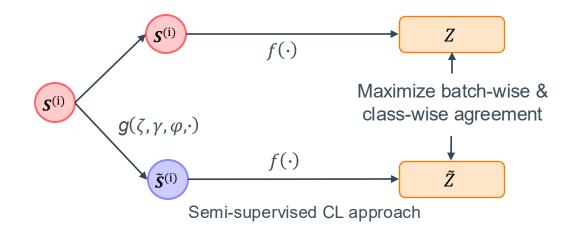
NEURAL INFORMATION PROCESSING SYSTEMS

University of Glasgow

- Via **DAReM**, we obtain two correlated latent space representations, Z and \widetilde{Z} .
- Facilitate semi-supervised CL by leveraging:
 - Batch-wise positive pairs: masked $(\widetilde{\mathbf{Z}}^{(i)})$ and unmasked $(\mathbf{Z}^{(i)})$ embeddings of the same input sequence $\mathbf{S}^{(i)}$ (self-supervised).
 - Class-wise positive pairs: masked (Z)
 and unmasked embeddings (Z) of the
 same class (supervised).
- Goal: Maximize agreement between masked, \tilde{Z} , and unmasked, Z, latent space representation.



Semi-supervised contrastive loss formulation



Experiments

1. Classification

- A. Spatiotemporal, nonstationary, and irregularly sampled benchmark (custom)
 - Consists of 2 datasets: DKT and a public realworld dataset from Microsoft.
- B. Irregularly sampled benchmark
 - Consists of 3 public datasets.
- C. Regular time series benchmark (UEA)
 - Consists of 30 public datasets.

2. Anomaly Detection

- Evaluation on a public benchmark.
- Consists of 2 datasets.
- Compare against 6 Models.

3. Regression

- Evaluation on a public benchmark.
- Consists of 19 datasets.
- Compare against 15 models.

Ablation Studies

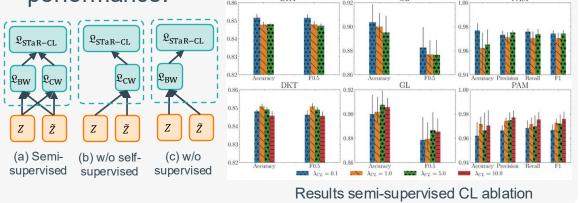
1. Architecture

 Comparison of STaRFormer against 2 ablations (Transformer-only & random regional masking) on 19 datasets → STaRFormer outperforms both ablations.

2. Impact of semi-supervised CL approach

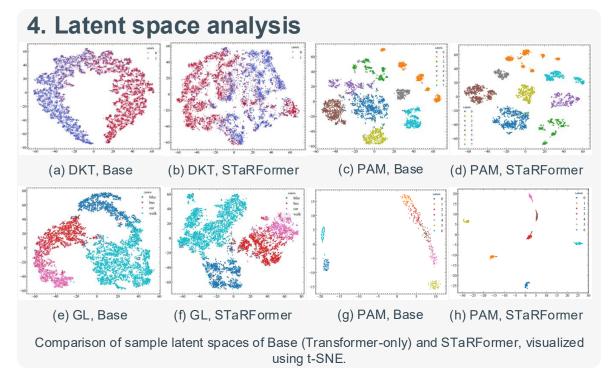
 Fusing batch-wise and class-wise similarities is beneficial (semi-supervised).

• Emphasis on CL loss, i.e., higher λ_{CL} , improves performance.



3. Impact of the regional masking approach

 No top performance for masking individual elements (γ = 0) → masking regions improves performance.



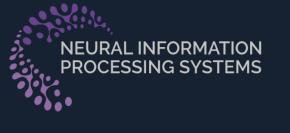
Maximilian Forstenhaeusler maximilian.forstenhaeusler@bmw.de, m.forstenhaeusler.1@research.gla.ac.uk

Daniel Külzer daniel.kuelzer@bmwgroup.com

Christos Anagnostopoulos
Christos.Anagnostopoulos@glasgow.ac.uk

Shameem Puthiya Parambath Sham.Puthiya@glasgow.ac.uk

Natascha Weber natascha.weber@bmwgroup.com



Check out our work

Thank you.

