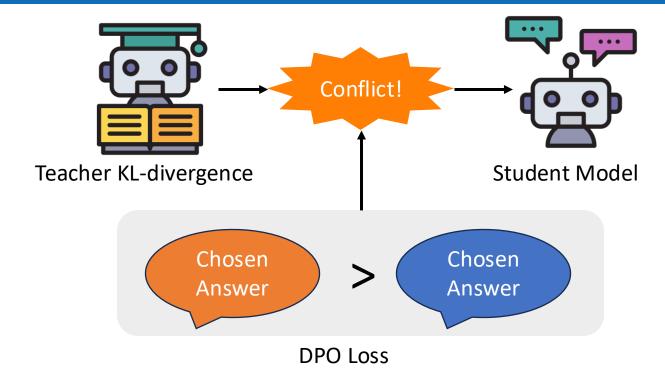
Preference Distillation via Value based Reinforcement Learning

Minchan Kwon, Junwon Ko, Kangil Kim, Junmo Kim

Introduction

- Preference Optimization, led by DPO, is becoming a key component of LLM training
- DPO-based Knowledge Distillation is actively explored in recent research
- Compare to other RL methods, DPO enables easier dataset construction for distillation
 - You need only which is good or bad!
- However, simply adding a KL-divergence term to DPO is insufficient

Introduction



- In the Rense of Q-learning, KL-divergence and DPO Loss can conflict
- We analyze the conflict and suggest the solution that can transfer teacher's knowledge without conflict with
 DPO loss

Optimal Policy Invariance under reward shaping

• In Andrew Y. Ng's seminal paper, it was proven that adding or subtracting a potential-based function to the reward, where the function depends only on the state, preserves the optimal policy.

$$\psi(\mathbf{s}_t, a_t) = V_{\phi}(\mathbf{s}_{t+1}) - V_{\phi}(\mathbf{s}_t).$$

• Here, V denotes a function that depends only on the state, not the action.

Action-based Shaping Breaks Policy Invariance

Conversely, we prove that action-dependent reward shaping breaks policy invariance.

Corollary 2.1 (Action-based Shaping Breaks Policy Invariance). Let $r'(s, a) = r(s, a) + \psi(s, a)$, where $\psi(s, a)$ is composed of the function dependent with both state and action. If $\psi(s, a) \in \{\alpha \log \pi_{\phi}(a \mid s), \alpha Q_{\phi}(s, a)\}$, then the resulting reward violates the policy invariance guarantee and may alter the optimal policy.

• This theoretically shows that functions used in previous distillation losses (e.g., KL-divergence) can interfere with the original reward in DPO.

Teacher-value based knowledge distillation

- To address this, we extract the teacher's value function and incorporate it into the reward in a way that satisfies potential-based reward shaping (PBRS), ensuring policy invariance during student learning.
- We first propose a method to estimate the value function of a DPO-trained model (Lemma 1).

Lemma 1 (Soft value function of a DPO-trained policy [25]). Let $Q_{\phi}(s, a)$ denote the token-level logits of a DPO-trained model π_{ϕ} , and let $\beta > 0$ be the temperature of the Boltzmann policy. Then the soft value function is given by:

$$V_{\phi}(s) = \beta \log \sum_{a \in \mathcal{V}} \exp(Q_{\phi}(s, a)/\beta).$$

Teacher-value based knowledge distillation

• Using the teacher's value function, we augment the reward function toward a policy-invariant direction.

$$\max_{\pi_{\theta}} \mathbb{E}_{(s,a) \sim \pi_{\theta}} \left[r(s,a) + \alpha \, \psi_{\phi}(s,a) \right]$$

The resulting formulation can be analytically derived as follows: (show formula here)

$$\mathcal{L}_{\text{TVKD}}(\pi_{\theta}, \mathcal{D}; \pi_{\phi}) = -\mathbb{E}_{(\tau_{w}, \tau_{l}) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(a^{w} \mid s^{w})}{\exp \left(\frac{\alpha}{\beta} \psi_{\phi}(s^{w}, a^{w}) \right)} - \beta \log \frac{\pi_{\theta}(a^{l} \mid s^{l})}{\exp \left(\frac{\alpha}{\beta} \psi_{\phi}(s^{l}, a^{l}) \right)} \right) \right]$$

Experiment

	DPOMIX				Helpsteer2			
Method	RM (↑)	MT (↑)	AE(↑)	OLL(↑)	RM (↑)	$\mathbf{MT}(\uparrow)$	AE (↑)	OLL(↑)
DPO Teacher	-0.77	5.74	73.12	53.45	-0.88	5.63	72.87	57.95
SFT Teacher	-0.94	5.58	71.02	53.15	-1.23	5.58	70.31	53.15
SFT	-1.55	3.56	43.62	40.18	-1.78	3.43	45.49	41.06
DPO	-1.41	3.70	47.03	35.48	-1.22	3.77	44.5	41.24
SimPO	-1.22	3.65	46.12	41.5	-1.37	3.75	49.98	41.33
WPO	-1.51	3.53	39.23	41.36	-1.62	3.62	48.35	$\overline{41.19}$
TDPO	-1.45	3.71	41.83	40.95	-1.84	3.61	46.11	41.14
VanillaKD	-1.66	3.46	38.88	41.17	-1.70	3.53	44.06	41.09
SeqKD	-1.38	3.40	37.16	41.17	-1.75	3.20	38.47	41.17
DDPO	-1.53	3.61	37.3	41.23	-1.64	3.58	43.97	41.23
DPKD	-1.57	3.43	37.99	41.35	-1.73	3.48	43.04	41.14
GKD	-1.61	3.52	36.63	41.19	-1.74	3.41	40.78	40.92
DCKD	-1.60	3.55	36.79	41.33	-1.46	3.51	49.98	41.09
ADPA	<u>-1.21</u>	<u>3.73</u>	<u>50.00</u>	40.29	-1.43	3.57	<u>50.00</u>	41.26
TVKD(Ours)	-1.15	3.97	52.18	41.61	-1.18	3.98	54.85	41.35

• Our method outperforms baselines across multiple benchmarks on two datasets.

Experiment

Mothod	DPOMIX				Helpsteer2			
Method	RM (↑)	MT (↑)	AE (↑)	OLL(†)	RM (↑)	$\mathbf{MT}(\uparrow)$	AE (↑)	OLL(†)
DPO Teacher	-0.77	5.74	73.12	53.45	-0.88	5.63	72.87	57.95
SFT Teacher	-0.94	5.58	71.02	53.15	-1.23	5.58	70.31	53.15
SFT	-1.55	3.56	43.62	40.18	-1.78	3.43	45.49	41.06
DPO	-1.41	3.70	47.03	35.48	-1.22	3.77	44.5	41.24
SimPO	-1.22	3.65	46.12	41.5	-1.37	3.75	49.98	41.33
WPO	-1.51	3.53	39.23	41.36	-1.62	3.62	48.35	$\overline{41.19}$
TDPO	-1.45	3.71	41.83	40.95	-1.84	3.61	46.11	41.14
VanillaKD	-1.66	3.46	38.88	41.17	-1.70	3.53	44.06	41.09
SeqKD	-1.38	3.40	37.16	41.17	-1.75	3.20	38.47	41.17
DDPO	-1.53	3.61	37.3	41.23	-1.64	3.58	43.97	41.23
DPKD	-1.57	3.43	37.99	41.35	-1.73	3.48	43.04	41.14
GKD	-1.61	3.52	36.63	41.19	-1.74	3.41	40.78	40.92
DCKD	-1.60	3.55	36.79	41.33	-1.46	3.51	49.98	41.09
ADPA	<u>-1.21</u>	<u>3.73</u>	<u>50.00</u>	40.29	-1.43	3.57	<u>50.00</u>	41.26
TVKD(Ours)	-1.15	3.97	52.18	41.61	-1.18	3.98	54.85	41.35

• Student: LLaMA 3.2 – 1B Teacher: LLaMA 3.2 – 8B

Training datasets: DPOMIX and HelpSteer

• Evaluation metrics: Reward model score, MT-Bench, Alpaca Eval, and Open LLM Leaderboard

Ablation Setting

Table 2: Results of ablation for TVKD using DPOMIX dataset. The best performances are highlighted in **bold**, while second-best performances are underline.

	Mistral-7B->Danube-500M		Mistral-7	B -> Llama-1B	Llama-8B->Llama-3B		
	RM(↑)	MT(↑)	RM (↑)	MT(↑)	RM(↑)	MT(↑)	
DPO	-3.03	3.21	-1.61	3.28	-1.10	5.08	
SimPO	-2.91	$\overline{2.96}$	-1.55	3.32	-1.12	$\overline{4.90}$	
DCKD	<u>-2.08</u>	2.84	-1.72	3.07	-1.25	4.86	
Ours	-1.99	3.22	-1.36	3.38	-1.05	5.19	

• The method remains robust across various teacher-student pairs.

Ablation Setting

Table 5: Comparison of various auxiliary rewards on the same setting in Table 1. In Alpaca-Eval (AE), we use our method as a baseline.

Туре	Name	Auxiliary Reward	Margin Acc.(↑)	MT-bench(↑)	AE(↑)
Action	Logits	Q(a,s)	18.29	3.61	37.18
Dependent	Log Probability	$\log \pi_\phi(a \mid s)$	18.31	3.43	32.50
State Dependent	Max	$\max_a \pi_\phi(a \mid s)$	28.86	3.79	36.07
	Margin	$\pi_{\phi}^{(1)}(s) - \pi_{\phi}^{(2)}(s)$	30.23	<u>3.90</u>	48.81
	Expectation	$\sum_a \pi_\phi(a \mid s) Q_\phi(a \mid s)$	30.23	3.45	<u>49.42</u>
	Ours	$\log \sum_a \exp\left(Q_\phi(a\mid s)\right)$	30.23	3.97	50.00

- We conducted ablation studies by varying the auxiliary reward term:
- Action-dependent terms significantly degrade test accuracy.
- State-dependent terms preserve performance.
- Our value-based term achieves the best performance overall.

Thank you