Flatten Graphs as Sequences: Transformers are Scalable Graph Generators

Dexiong Chen, Markus Krimmel, Karsten Borgwardt

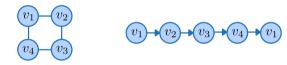
Max Planck Institute of Biochemistry

NeurIPS 2025

What is the "language" of a graph?

What is the "language" of a graph? \Rightarrow Random walks!

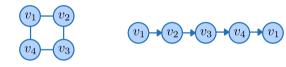
What is the "language" of a graph? \Rightarrow Random walks!



Eulerian trail

An Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once.

What is the "language" of a graph? \Rightarrow Random walks!



Eulerian trail

An Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once.

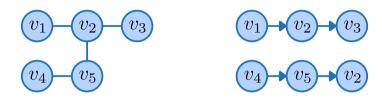
But most graphs don't have Eulerian trails according to Euler's theorem...

Extension of Eulerian trail

Segmented Eulerian trail (SET)

A segmented Eulerian trail (SET) is a sequence of trail segments such that each edge is visited exactly once across all segments, and segments do not need to be connected.

Extension of Eulerian trail

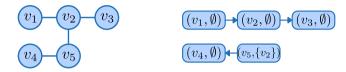


Segmented Eulerian trail (SET)

A segmented Eulerian trail (SET) is a sequence of trail segments such that each edge is visited exactly once across all segments, and segments do not need to be connected.

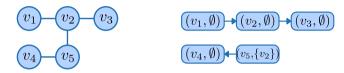
Remarks:

- Each graph has multiple SETs, but each SET can induce only one graph.
- The graph defined by any prefix of a SET is a subgraph of the original graph, but not necessarily an induced subgraph.



Segmented Eulerian neighborhood trail (SENT)

- Each node in a SET will be paired with a neighborhood set which includes all visited nodes that are neighbors to this node.
- Each edge is still visited exactly once across all trails and neighborhood sets.

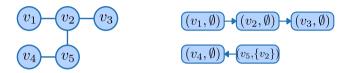


Segmented Eulerian neighborhood trail (SENT)

- Each node in a SET will be paired with a neighborhood set which includes all visited nodes that are neighbors to this node.
- Each edge is still visited exactly once across all trails and neighborhood sets.

Key properties:

Prefixes of any SENT are induced subgraphs of the original graph.

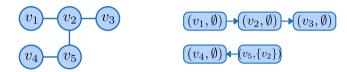


Segmented Eulerian neighborhood trail (SENT)

- Each node in a SET will be paired with a neighborhood set which includes all visited nodes that are neighbors to this node.
- Each edge is still visited exactly once across all trails and neighborhood sets.

Key properties:

- Prefixes of any SENT are induced subgraphs of the original graph.
 - ⇒ Substructure-conditioned generation can be achieved for free!

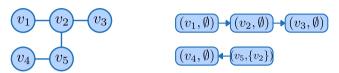


Segmented Eulerian neighborhood trail (SENT)

- Each node in a SET will be paired with a neighborhood set which includes all visited nodes that are neighbors to this node.
- Each edge is still visited exactly once across all trails and neighborhood sets.

Key properties:

- Prefixes of any SENT are induced subgraphs of the original graph.
 - ⇒ Substructure-conditioned generation can be achieved for free!
- Each node is visited once in the trails (but not in the neighborhood sets).



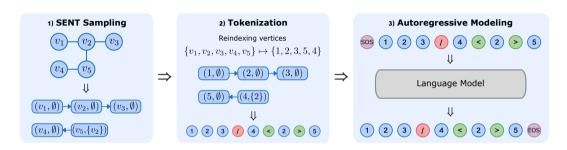
Segmented Eulerian neighborhood trail (SENT)

- Each node in a SET will be paired with a neighborhood set which includes all visited nodes that are neighbors to this node.
- Each edge is still visited exactly once across all trails and neighborhood sets.

Key properties:

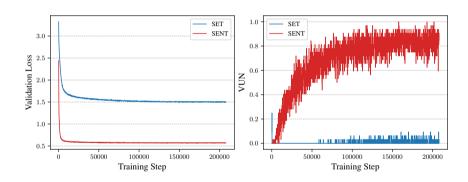
- Prefixes of any SENT are induced subgraphs of the original graph.
 - ⇒ Substructure-conditioned generation can be achieved for free!
- Each node is visited once in the trails (but not in the neighborhood sets).
 - \Rightarrow A SENT can be sampled efficiently via random path sampling.

AutoGraph: graph generation as language modeling

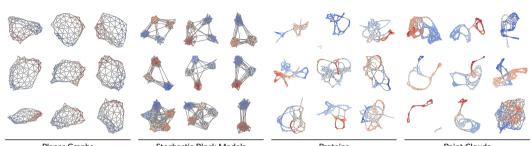


- Vertices reindexing relies on the node ordering in the SENT.
- Special tokens are used to indicate breaks between segments, and the start and end of neighborhood sets.
- Graph generation is recast as a potentially easier sequence generation problem.

Experiment: SET vs SENT



Results on synthetic graph datasets



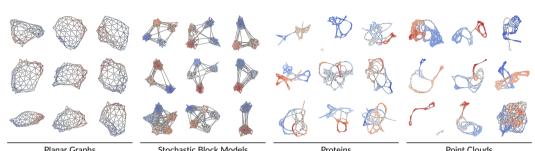
Planar Graphs $n_{ m graphs}=128$, $ V =64$			
Model	$MMD_R \mathord{\downarrow}$	VUN↑	
SOTA AutoGraph	1.8 1.5	90.0 87.5	

Stochastic Block Models			
$n_{\mathrm{graphs}} = 128$, $ V _{\mathrm{avg}} pprox 104$			
Model	$MMD_R {\downarrow}$	VUN↑	
SOTA	1.5	85.0	
AutoGraph	3.4	92.5	
	$n_{ m graphs} =$ Model SOTA	$n_{ m graphs} = 128, V _{ m avg}$ Model MMD $_R \downarrow$ SOTA 1.5	

$n_{ m graphs} = 587, V _{ m avg} pprox 258$		
$MMD_R \mathord{\downarrow}$	VUN↑	
4.7	-	
2.3	-	
	587 , $ V _{ ext{avg}}$ $MMD_R \downarrow$ 4.7	

Point Clouds $n_{ m graphs} = 26$, $ V _{ m avg} pprox 1332$			
SOTA	6.8	-	
AutoGraph	3.0	-	

Results on synthetic graph datasets



$n_{\rm graphs} = 128, V = 64$			
Model	$MMD_R \mathord{\downarrow}$	VUN↑	
SOTA	1.8	90.0	
AutoGraph	1.5	87.5	

Stochastic Block Models $n_{ m graphs}=128$, $ V _{ m avg}pprox 104$			
Model	$MMD_R {\downarrow}$	VUN↑	
SOTA	1.5	85.0	
AutoGraph	3.4	92.5	

$n_{ m graphs} = 587, V _{ m avg} pprox 258$		
Model	$MMD_R \mathord{\downarrow}$	VUN↑
SOTA	4.7	-
AutoGraph	2.3	-

Point Clouds $n_{ m graphs}=26, V _{ m avg}pprox 1332$			
Model	$MMD_R \downarrow$	VUN↑	
SOTA	6.8	-	
AutoGraph	3.0	-	

AutoGraph is 100x faster than discrete diffusion models (DiGress) in sampling!

Extension to attributed graphs

AutoGraph can be extended to graphs with node and edge attributes \Rightarrow by inserting the attributes into the SENT sequence in an interleaved fashion.

GuacaMol $n_{ m graphs} = 1.1 { m M}, V _{ m avg} pprox 28$					
Model	Valid↑	Unique↑	Novel↑	KL div↑	FCD↑
SOTA	85.2	100	99.9	92.9	68.0
AutoGraph	91.6	100	97.7	97.5	79.2
AutoGraph (pretrained)	95.9	100	95.5	98.1	91.4

Unconditional generation

Conditional generation

Take-home messages

- A powerful, scalable, and flexible model for attributed graph generation
- Bridge the gap between language modeling and graph generation
- Potential applications for drug discovery, protein design, etc
- Towards graph foundation models for biology

Take-home messages

- A powerful, scalable, and flexible model for attributed graph generation
- Bridge the gap between language modeling and graph generation
- Potential applications for drug discovery, protein design, etc
- Towards graph foundation models for biology

Image created by ChatGPT

References I

- A. Bergmeister, K. Martinkus, N. Perraudin, and R. Wattenhofer. Efficient and scalable graph generation through iterative local expansion. In *International Conference on Learning Representations (ICLR)*, 2024.
- J. Jo, D. Kim, and S. J. Hwang. Graph generation with diffusion mixture. In International Conference on Machine Learning (ICML). PMLR, 2024.
- C. Vignac, I. Krawczuk, A. Siraudin, B. Wang, V. Cevher, and P. Frossard. Digress: Discrete denoising diffusion for graph generation. In International Conference on Learning Representations (ICLR), 2022.