

Measure-Theoretic Anti-Causal Representation Learning

Arman Behnam

Binghui Wang

Computer Science Department, Illinois Institute of Technology

Causality and Causal Representation Learning: Foundations

What is Causality?

- ▶ Causation: X causes Y if changing X would change Y
- ► **Association**: *X* and *Y* occur together (correlation)
- ► **Key distinction**: Causation implies *interventional* relationship

Causal Representation Learning:

- ▶ **Definition**: Study of discovering and leveraging causal relationships rather than mere statistical associations
- ► Goal: Identify high-level causal variables from low-level observations
- **Bridge**: Statistical pattern recognition \rightarrow causal reasoning

Background: Causal Representation Learning Taxonomy

Distribution/Domain-Invariant Methods:

- ▶ Classical: IRM, REx, Domain Adaptation seek invariant representations
- ► Limitation: No explicit causal modeling, assume I.I.D. data

Structure-Based Methods:

- ▶ **LECI, ICP, CSG**: Explicit DAG structure requirements
- ▶ Limitation: Require known SCM structure, limited to perfect interventions

Intervention-Based Methods:

- ► ICRL, CIRL, iCaRL: Model causal effects through interventions
- ► Limitation: Assume perfect interventions, need explicit SCM

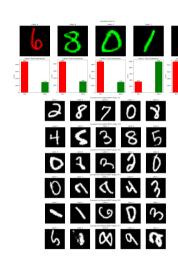
Related Works

Anti-Causal Representation Learning:

- ► Theoretical: Schölkopf et al. (2012) causal vs. anticausal paradigm
- ► Recent advances: Invariant representations (Jiang & Veitch, 2022)
- ► Theory: Schölkopf et al. (2021), Bengio et al. (2019) meta-transfer objectives
- ► Interventional: Ahuja et al. (2023), von Kügelgen et al. (2023)

Motivation

- Traditional ML assumes causal direction: features cause labels
- ► Anti-causal real problems: labels cause features
 - Disease causes symptoms (medical diagnosis)
 - Digit identity causes visual patterns
 - ► Tumor presence causes tissue appearance
- ► Challenge: Environment factors create spurious correlations
 - ► Hospital protocols affect medical images
 - Different imaging conditions change patterns
- ► **Goal**: Learn generalizable representations across environments by capturing true anti-causal mechanism



Problem

Anti-causal structure: $Y \rightarrow X \leftarrow E$

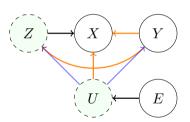
- ► *Y*: Label (disease, digit)
- ► *X*: Observations (symptoms, images)
- ► *E*: Environment (hospital, imaging setup)

Key Challenge:

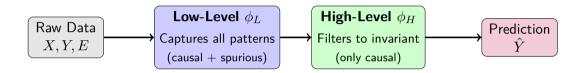
- ▶ Learn $Y \rightarrow X$ (true causal mechanism)
- ightharpoonup Remove E o X (spurious correlation)
- ► Generalize to unseen environments

Existing Methods Limitations:

- ► Just for perfect interventions
- ► Need explicit DAG structure



ACIA: Two-Level Learning



Analogy: Recording audio

- $ightharpoonup \phi_L$: Microphone captures everything (voice + background noise)
- $ightharpoonup \phi_H$: Noise cancellation filters to just voice

Key Takeaway

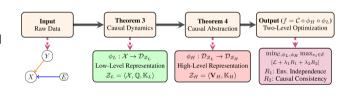
Why two levels? Single-level can't balance detail vs. invariance

Method

ACIA: Anti-Causal Invariant Abstractions **Key Innovation**: Hierarchical representation

- ► Low-level ϕ_L : Captures raw anti-causal relationships

 - Preserves environment-specific information
- ▶ **High-level** ϕ_H : Distills invariant features
 - ► Removes environment effects
 - lacktriangle Retains only Y-relevant information



Measure-Theoretic Foundation: Why It Matters

Traditional Causality: Structural equations + DAGs

- ► Requires explicit causal graph
- Limited to perfect interventions

Measure-Theoretic Causality:

Causal Space =
$$(\Omega_e, \mathscr{H}_e, P_e, K_e)$$

- $ightharpoonup \Omega_e$: Sample space (all possible states)
- \blacktriangleright \mathscr{H}_e : Event space (σ -algebra)
- $ightharpoonup P_e$: Probability measure
- $ightharpoonup K_e$: Causal kernel (the key!)

Advantage

Kernels K_e encode causal relationships implicitly $[0.2cm] \Rightarrow No DAG$ needed

Mathematical Foundations: Interventional Kernels

Key Theorem: Interventional Kernel Construction

$$K_S^{do(\mathcal{X},\mathbb{Q})}(\omega, A) = \int_{\Omega} K_S(\omega, d\omega') \mathbb{Q}(A|\omega')$$
 (1)

Perfect vs Imperfect Interventions:

- ▶ Perfect: $\mathbb{Q}(A|\omega') = \mathbb{Q}(A)$ (independent of ω')
- ▶ Imperfect: $\mathbb{Q}(A|\omega') = \alpha \cdot P(A|Y = y') + (1 \alpha) \cdot P(A)$

Anti-causal Property:

- $K_S^{do(X)}(\omega, \{Y \in B\}) = K_S(\omega, \{Y \in B\})$
- $K_S^{do(Y)}(\omega, \{X \in A\}) \neq K_S(\omega, \{X \in A\})$

Regularizer Implementation Details

Environment Independence (R_1) :

$$R_{1} = \sum_{e_{i} \in \mathcal{E}, i \neq i} \left\| \mathbb{E}[\phi_{H}(\phi_{L}(X))|Y = y, E = e_{i}] - \mathbb{E}[\phi_{H}(\phi_{L}(X))|Y = y, E = e_{j}] \right\|_{2}$$
 (2)

Causal Structure Consistency (R_2) :

$$R_2 = \sum_{i \in \mathcal{E}} \| \mathbb{E}[Y | \phi_H(\phi_L(X)), E = e_i] - \mathbb{E}[Y | K_{\{e_i\}}^{do(Y)}] \|_2$$
 (3)

Practical Implementation:

- $ightharpoonup R_1$: Minimize KL divergence between conditional distributions
- $ightharpoonup R_2$: Align predictions with interventional distributions
- $ightharpoonup \lambda_1, \lambda_2 = O(1/\sqrt{n})$ for convergence guarantees

Theoretical Guarantees

OOD Generalization Bound:

$$\mathbb{E}_{e_{\mathsf{test}}}[\ell(f^*)] \le \max_{e \in \mathcal{E}} \mathbb{E}_{e}[\ell(f^*)] + O\left(\sqrt{\frac{\log(1/\delta)}{n_{test}}}\right) \tag{4}$$

Performance Gap Lower Bound:

$$|\mathbb{E}_{e_{\mathsf{test}}}[\ell(f^*)] - \mathbb{E}_{e_{\mathsf{train}}}[\ell(f^*)]| \ge \min_{e \in \mathcal{E}} \|K_{\{e\}}^{do(X)} - K_{\{e\}}\|_{\mathcal{H}}$$
 (5)

Convergence Rate:

- ▶ Distance to optimum: $O(1/\sqrt{T}) + O(1/\sqrt{n})$
- ightharpoonup T: iterations, n: sample size

Key Takeaway

First anti-causal method with provable OOD generalization for imperfect interventions

Experiments & Results

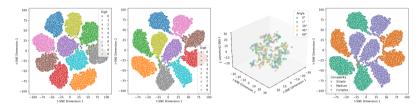
Datasets: CMNIST, RMNIST, Ball Agent, Camelyon17

Dataset	Test Acc	Env. Indep.	Low-level Inv.	Interv. Robust.	
CMNIST	99.2%	0.00	0.01	0.02	
Best Baseline	95.5%	0.64	0.40	0.67	
RMNIST	99.1%	0.00	0.03	0.01	
Best Baseline	93.5%	0.23	2.77	0.04	
Ball Agent	99.98%	0.52	0.03	0.03	
Best Baseline	74.0%	0.46	0.39	0.05	
Camelyon17	84.4%	0.28	0.42	0.43	
Best Baseline	65.5%	0.23	0.50	0.45	

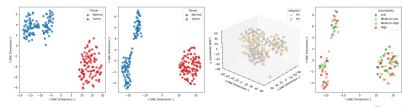
Key Achievements:

- ▶ Perfect environment independence on synthetic datasets
- ► Robust to both perfect and imperfect interventions

Experiments & Results - Visualization of Learned Representations RMNIST Results - Two-Level Disentanglement



Camelyon17 Results - Medical Data Generalization



Technical Challenges and Solutions

- 1. **Challenge**: Single-level representations can't balance causal preservation vs environment invariance
 - **Solution**: Two-level hierarchy
 - lackbox ϕ_L preserves rich anti-causal structure
 - lackbox ϕ_H abstracts to environment-invariant features
- 2. **Challenge**: Handling imperfect interventions in real-world scenarios
 - **Solution**: Interventional kernel $K_S^{do(\mathcal{X},\mathbb{Q})}(\omega,A) = \int K_S(\omega,d\omega')\mathbb{Q}(A|\omega')$
 - ▶ Perfect interventions: $\mathbb{Q}(A|\omega') = \mathbb{Q}(A)$
 - ▶ Imperfect interventions: $\mathbb{Q}(A|\omega')$ depends on ω'
- 3. **Challenge**: Learning without explicit DAG requirements **Solution**: Measure-theoretic causality (Product Causal Space & Sub- σ -algebra)
 - ▶ Direct learning from anti-causal structure
 - ► Theoretical OOD generalization guarantees

ACIA vs. State-of-the-Art: Comprehensive Comparison

Method	Anti-causal	No SCM	Imperfect Int.	Nonparam.	OOD			
Distribution-Invariant Methods								
IRM, REx, Domain Adapt.	Х	1	×	×	/			
CausalDA, Transportable Rep	✓	/	×	/	/			
Structure-Based Methods								
ICP, CSG, LECI	×	×	✓	1	✓			
Causal Disentanglement	×	×	×	×	/			
Intervention-Based Methods								
ICRL, CIRL, iCaRL	Х	×	✓	1	/			
Nonparametric ICR	×	×	✓	/	/			
ACIA (Ours)	✓	✓	✓	1	1			

Key Takeaway

ACIA is the **only** method satisfying all five critical properties simultaneously

Contributions

Theoretical:

- ► For perfect/imperfect interventions through interventional kernels
- ► Causal features identification across environments without requiring explicit DAG specifications
- ► Out-of-Distribution (OOD) generalization bounds

Practical:

- ► Capture and exploit anti-causal structures in synthetic and real-world datasets
- ► Superiority over state-of-the-arts