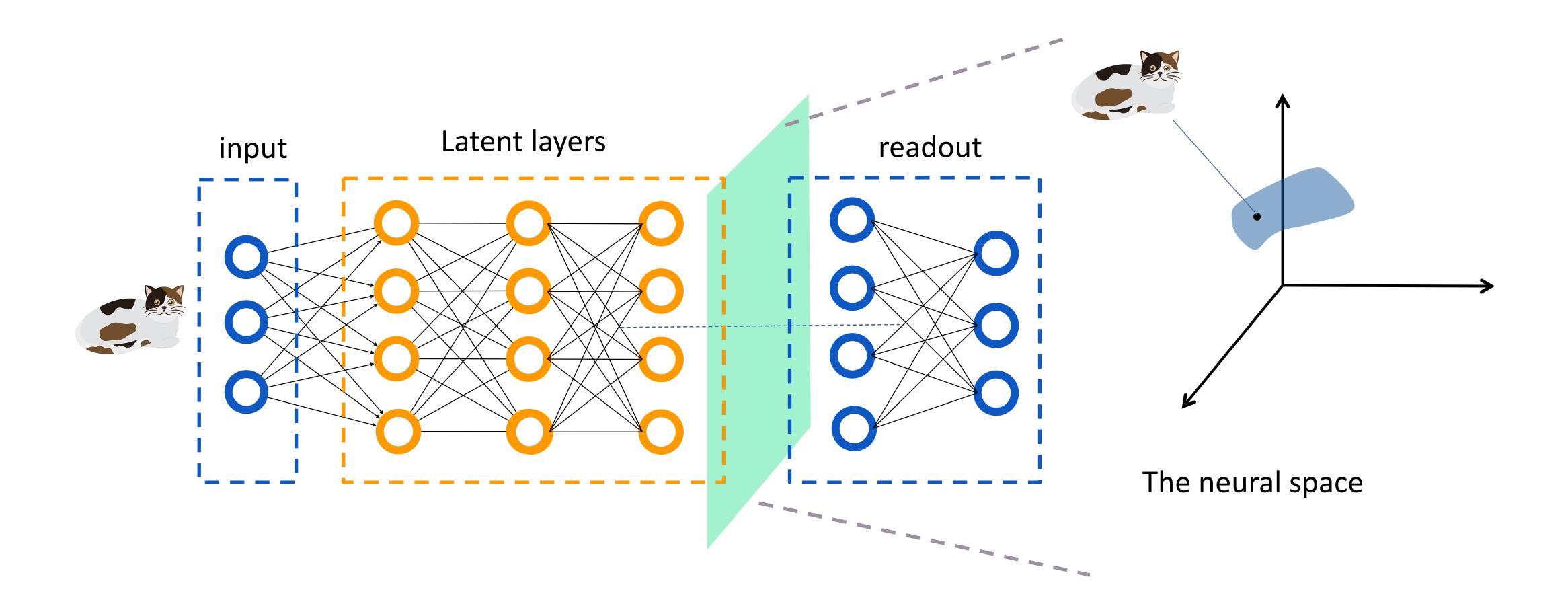
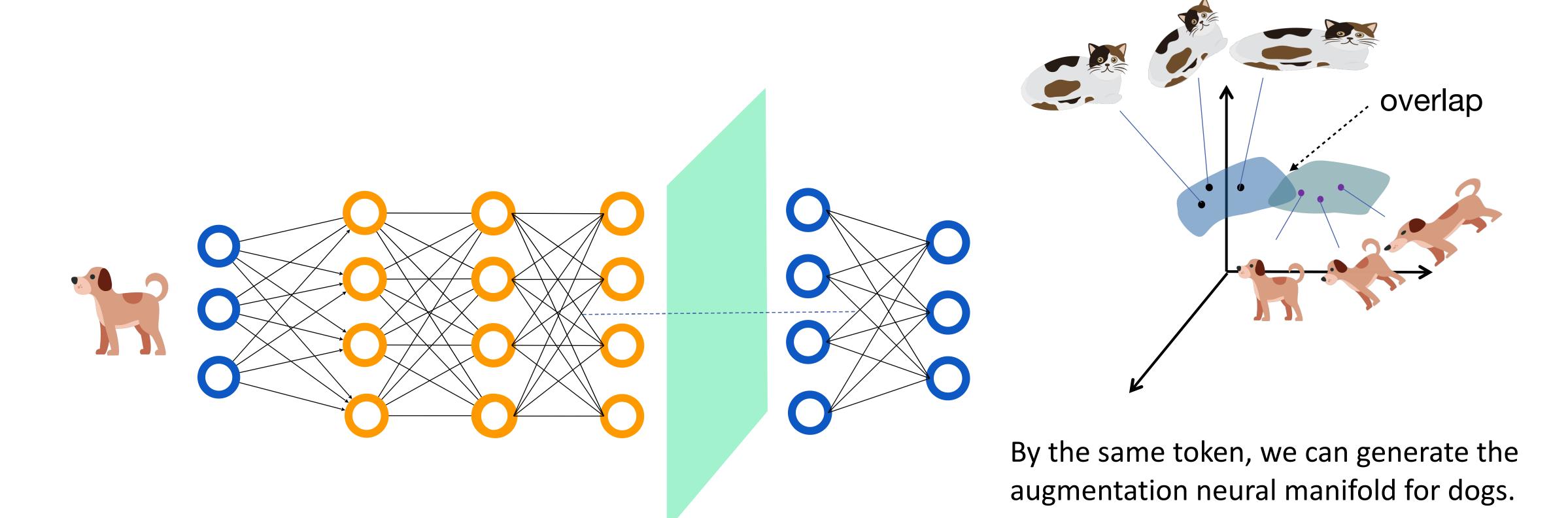
Contrastive self-supervised learning as neural manifold packing

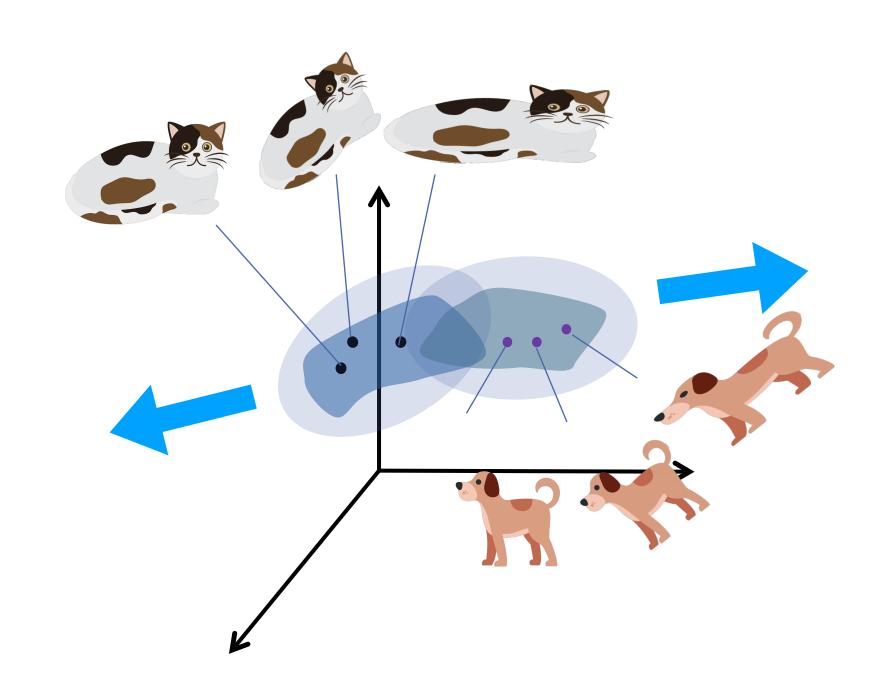
Guanming Zhang, David J. Heeger and Stefano Martiniani

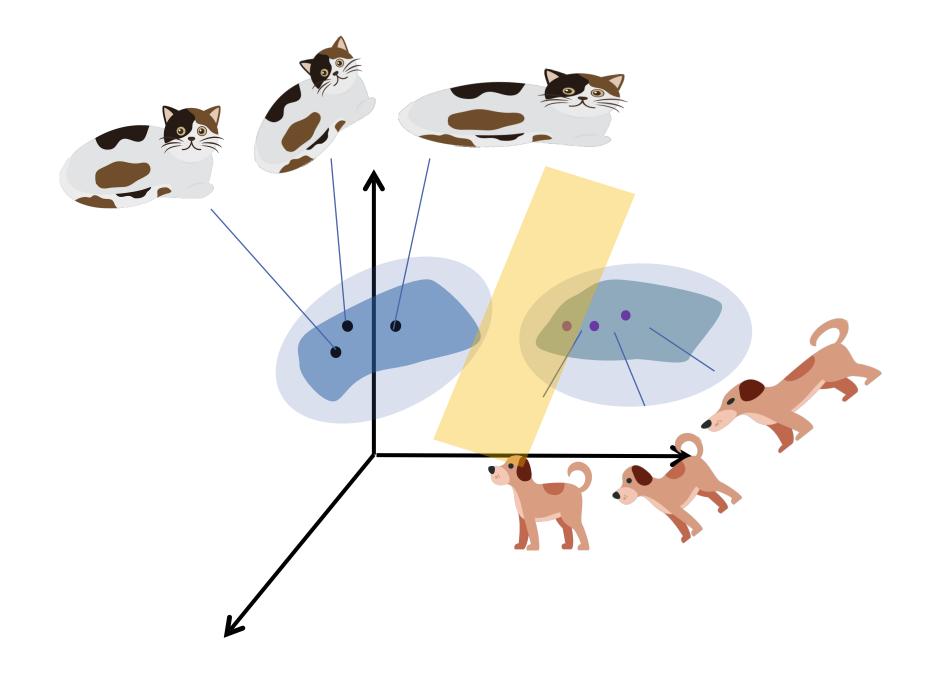








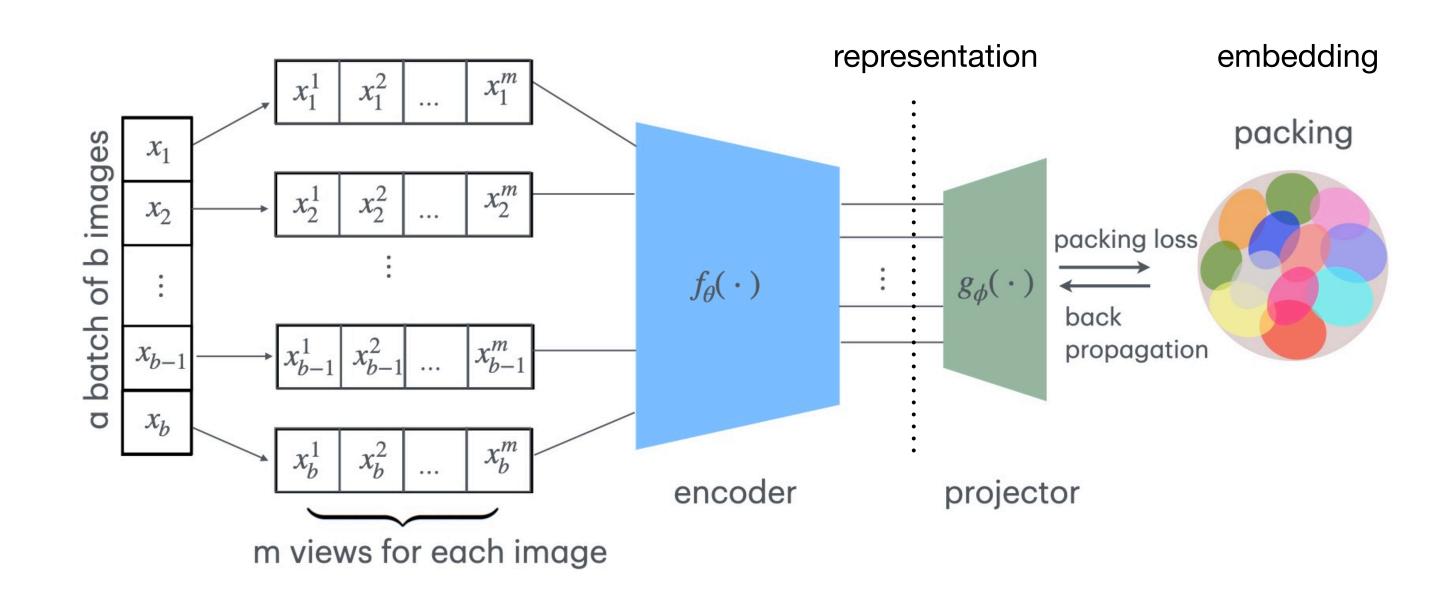




- 1. Enclose the sub-manifold by ellipsoids
- 2. Make these ellipsoids repulsive

Linearly separated sub-manifolds

Contrastive self-supervised learning as manifold packing-CLAMP

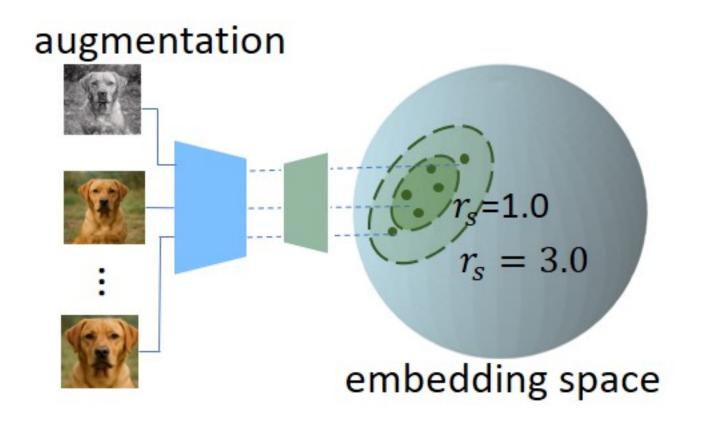


clamp

Similar to most SSL models, we treat each image as a **distinct** category. No label is needed. We use MLP projection head as the feature projector, it is discarded after pretraining. All embedding vector are normalized on a unit hypersphere

CLAMP

Augmentation sub-manifold and its circumscribed ellipsoids



 Z_i : centers of the augmentation sub-manifold

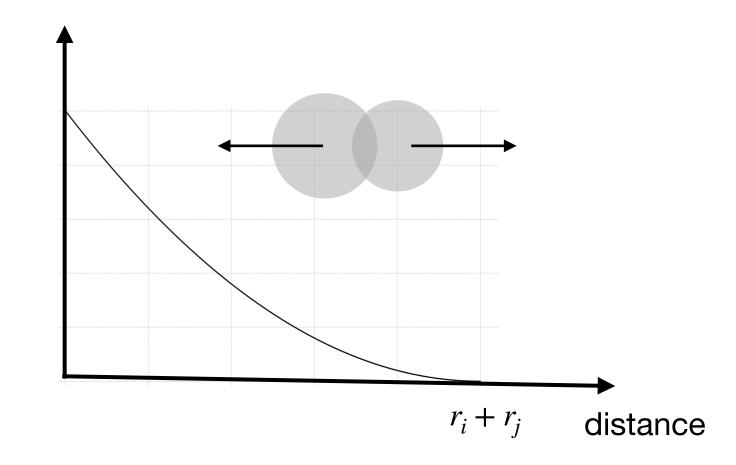
 Λ_i : empirical covariance matrix of embedding vectors corresponding to the same input sample

$$(\tilde{z} - Z_i)\Lambda_i^{-1}(\tilde{z} - Z_i)^T = r_s^2$$

$$\mathcal{L}_{overlap} = egin{cases} \sum\limits_{i
eq j} \left(1 - rac{\|Z_i - Z_j\|_2}{r_i + r_j}
ight)^2, & ext{if } \|Z_i - Z_j\|_2 < r_i + r_j \ 0, & ext{otherwise} \end{cases}, ext{where } r_i = r_s \sqrt{rac{ ext{Tr}(\Lambda_i)}{m}}.$$

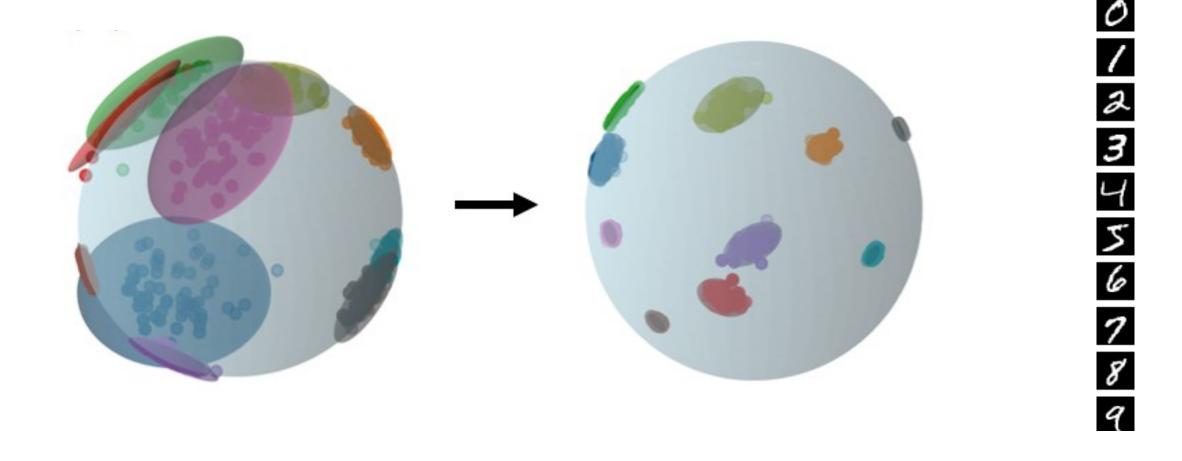
The log-normalized loss, $\log(\mathcal{L}_{overlap})$, decreases as

- (1) The sizes of the sub-manifolds shrink
- (2) The distances of two overlapped sub-manifolds increases



CLAMP

Toy model



We selected 10 images from the MNIST dataset, one for each digit from 0 to 9, and applied Gaussian noise augmentation. These augmented images were then encoded into a 3-dimensional embedding space for visualization.

Solid dots: embedding points of each augmented view

Shaded regions: circumscribed ellipsoids

Evaluation results

Linear evaluation and semi-supervised learning

	Linear evaluation		Semi-supervised	
Method	ImageNet-100	ImageNet-1K	1%	10%
SimCLR[1]	79.64	66.5	42.6	61.6
SwAV[29]	_	72.1	49.8	66.9
Barlow Twins [42]	80.38*	68.7	45.1	61.7
BYOL[2]	80.32*	69.3	49.8	65.0
VICReg[6]	79.4	68.7	44.75	62.16
CorInfoMax[43]	80.48	69.08	44.89	64.36
MoCo-V2[3]	79.28*	67.4	43.4	63.2
SimSiam[4]	81.6	68.1	_	-
A&U [30]	74.6	67.69	_	-
MMCR (4 views+ME)[34]	82.88	71.5	49.4	66.0
CLAMP (4 views)	85.12 $\pm .05$	$69.50 \pm .14$	$47.38 \pm .56$	$65.10 \pm .30$
CLAMP (8 views)	85.10 $\pm .15$	$70.04 \pm .16$	$47.87 \pm .03$	$65.96 \pm .04$

Following standard linear evaluation protocols, we froze the pretrained ResNet-50 backbone encoder and trained a linear classifier on representation. Training was conducted for 100 epochs on ImageNet-1K (14,197,122 images) and 200 epochs on ImageNet-100.

Evaluation results

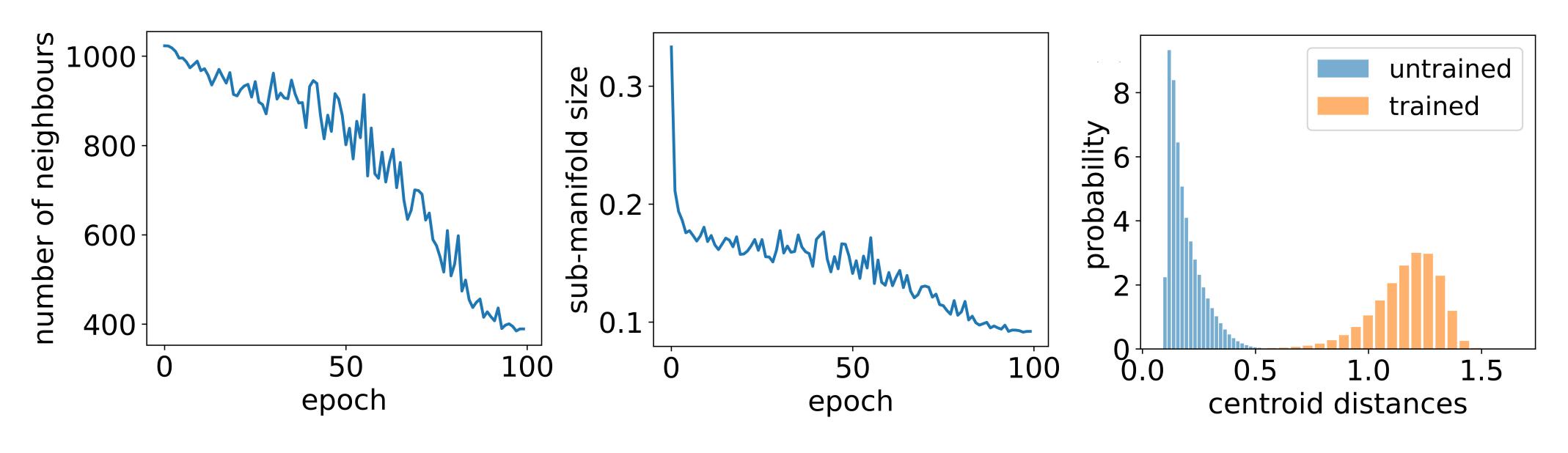
Transfer to object detection tasks

Methods	mAP ↑	AP50 ↑	AP75 ↑
SimCLR	54.4	81.6	61.0
Barlow Twins	53.1	80.9	57.7
BYOL	55.6	82.3	62.0
MoCo v2	54.7	81.7	60.2
MMCR	54.6	81.9	60.0
CLAMP	55.7	82.3	62.4

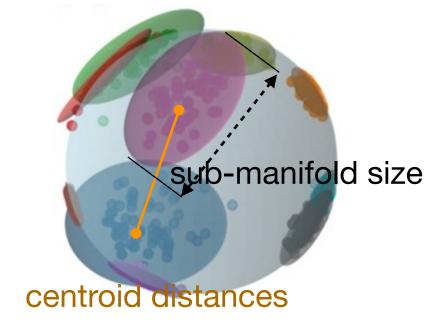
We present results on object detection using a Faster R-CNN architecture with a C4 backbone (pretrained on ImageNet-1K with 8 views and batch size 512 for 100 epochs), fine-tuned on VOC2007+2012 training dataset and tested on VOC2007 test dataset

Training dynamics-interpretability

Training dynamics reflect geometry change

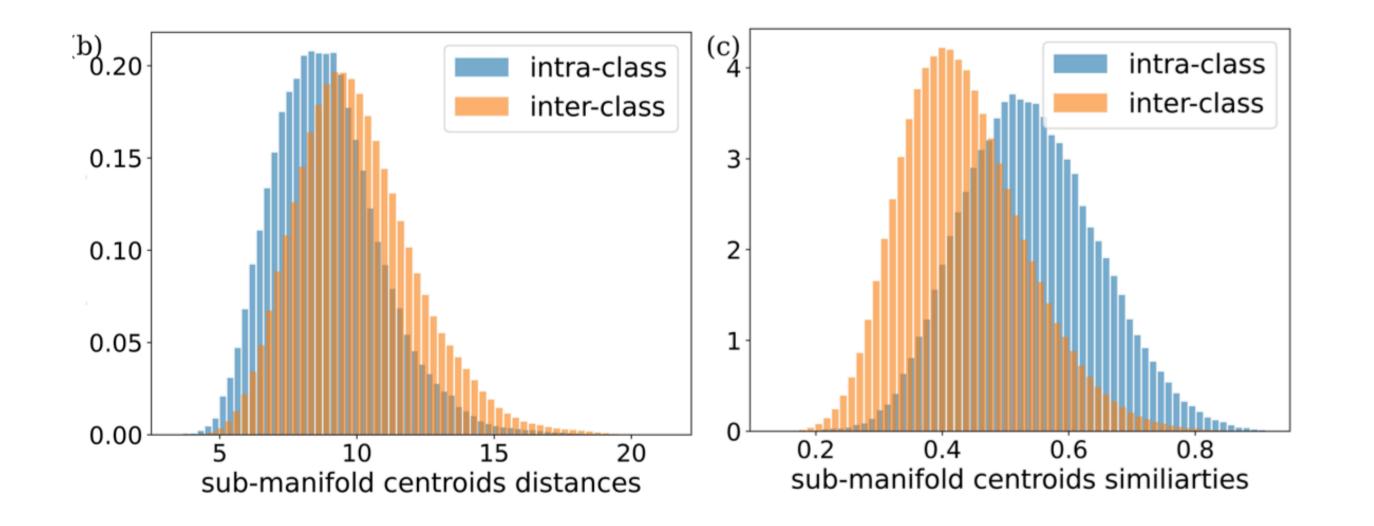


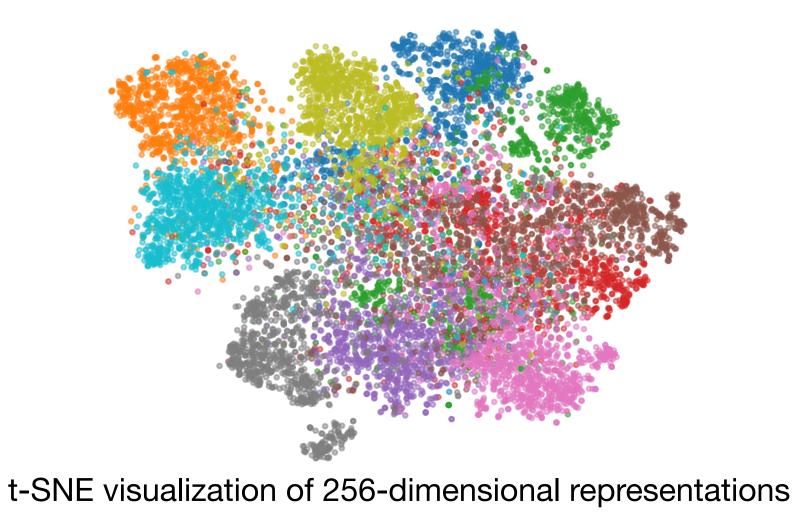
Two sub-manifolds are counted as neighbors if $||Z_i - Z_j||_2 < r_i + r_j$



Representation

Properties of the representation

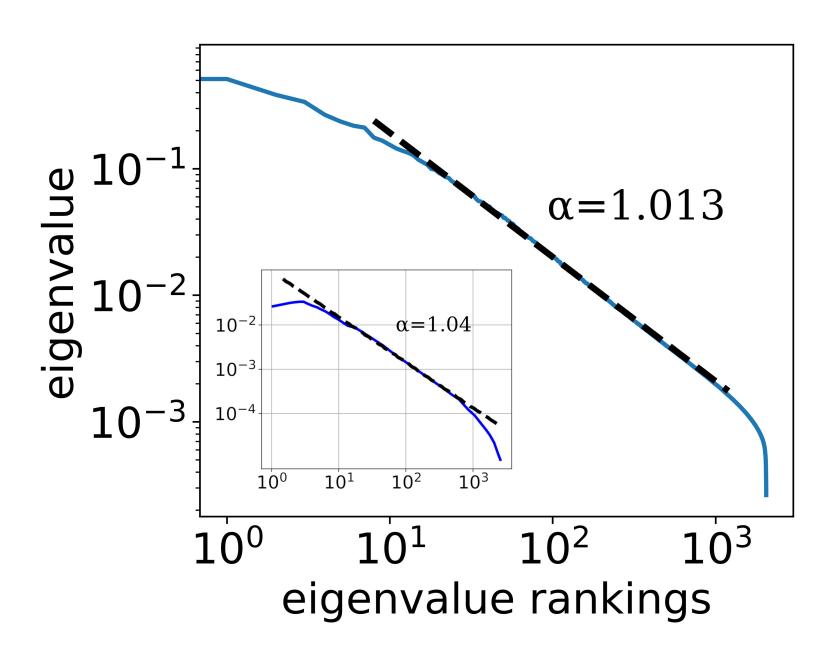




We achieve 90.2% frozen-backbone linear evaluation accuracy on the CIFAR-10 dataset using ResNet-18. We find that category structures emerge as the result of SSL pretraining.

Biological implications

Eigenspectrum and Brain-score



Methods	V1	V2	V4	IT
SimCLR	0.224	0.288	0.576	0.552
SwAV	0.252	0.296	0.568	0.533
Barlow Twins	0.276	0.293	0.568	0.545
BYOL	0.274	0.291	0.585	0.55
MMCR (8 views)	0.270	0.311	0.577	0.554
CLAMP (4 views)	0.258 ± 0.013	0.336 ± 0.017	0.558 ± 0.004	0.570 ± 0.005

For stimulus-evoked activity in mouse V1 (primary visual cortex), the eigenspectrum of its covariance matrix follows a power-law decay, $\lambda \propto n^{-\alpha}$, with $\alpha \approx 1.04$, and $\alpha > 1$ is indeed necessary to ensure differentiability of the neural code.

We then evaluated representational alignment using the Brain-Score benchmark, which measures how well model activations predict primate neural recordings via cross-validated linear regression.

Thank you!