Auto-Compressing Networks

0 0 0 ... 0

0 0 0 ... 0

0 0 0 ... 0

000...0

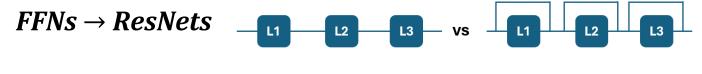
Vaggelis Dorovatas, Georgios Paraskevopoulos, Alexandros Potamianos

Introduction

In this work, we investigate the effect of inter-layer connectivity and propose a residual variant, coined as Auto-Compressing Networks.

Importance of Inter-Layer Connectivity

Artificial Neural Networks



- Multi-path architectures; **short & long connections**
- Altered information flow & gradient dynamics
- Solved vanishing gradients of FFNs;

Biological Neural Networks

- **Short & Long connections (Small-world)**
- Altered BNN connectivity leads to distinct cognitive **profiles:** Dyslexia vs Autism

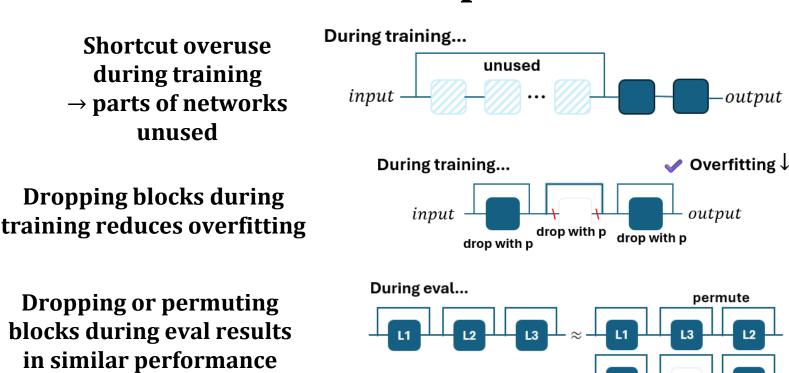
Residual Architectures

- Highway Networks: $h_i = (1 C) \cdot x + C \cdot f(h_{i-1})$
- Residual Networks: $h_i = I \cdot x + I \cdot f(h_{i-1})$
- Residual Variants:

$$h_i = H \cdot x + T \cdot f(h_{i-1})$$

 Most variants explore different aggregation mechanisms for improving performance, convergence, ...

Effective Depth



ResNets facilitate efficient training, but they may not use their resources (depth) efficiently.

Auto-Compressing Networks (ACNs)

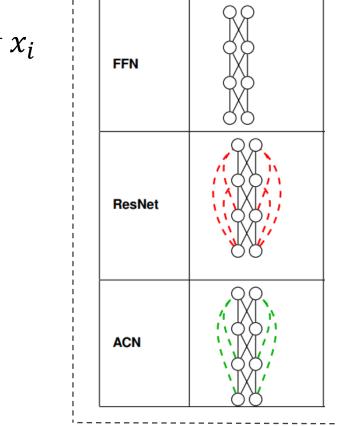


×L-1

• • • ... •

• • • ... •

• • • ... •



Decomposition of the Full Gradient

 $\uparrow y = \Sigma_{i=1..(L-2)} x_i$

• • • ... •

• • • ... •

We analyse the gradient of **an intermediate layer** i for **1D linear case**.

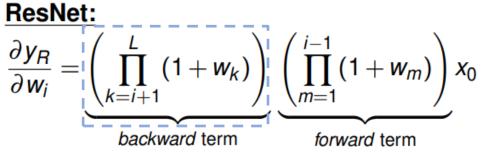
We can decompose it into:

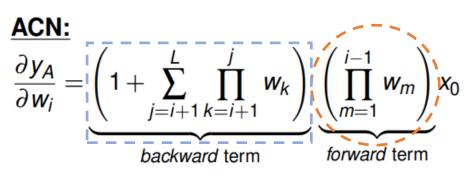
Forward Term

- Signal up to layer i
- ACNs equivalent to FFNs

Backward Term

- Signal from the loss
- Multiple paths in ACNs & ResNets
- → The number decreases with depth





Implicit Layer-wise Dynamics of ACNs

ACNs feature an **asymmetric gradient structure**:

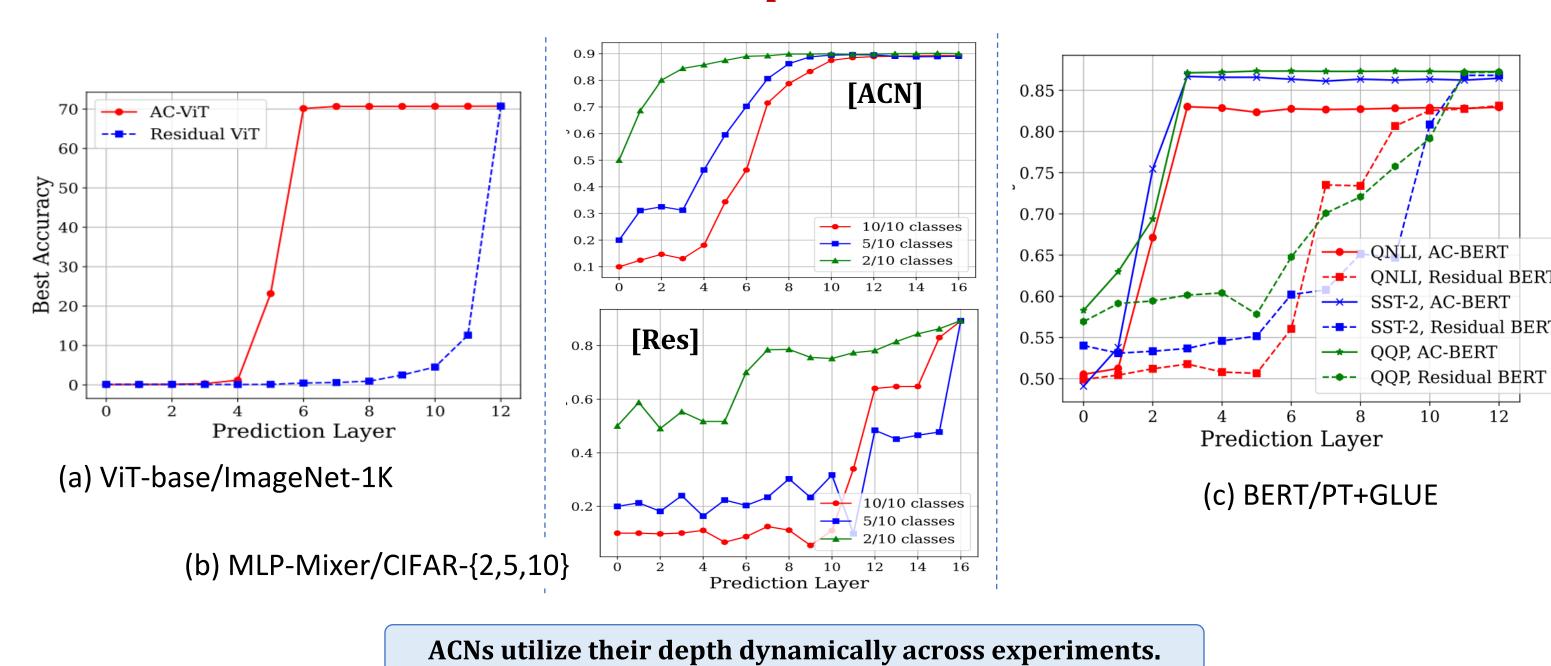
- Forward term: Identical to FFNs single path.
- **Backward term**: Similar to ResNets multiple paths, but linear in depth (vs exponential).
- Layer-wise Training Dynamics: Deeper layers receive weaker gradients because of:
 - A weaker forward component and
 - Fewer backward paths

Auto-Compression

If the *k* bottom layers, that are trained at a faster rate, suffice to solve the task (minimize the loss), deeper layers remain unused:

⇒ Implicit information compression

Do ACNs compress more?



Do ACNs *generalize* better?

Robustness against Noise

- Setup

Model	Baseline	Gaussian Noise			Salt and Pepper Noise		
Model	w/o noise	$\sigma = 0.1$	$\sigma = 0.2$	$\sigma = 0.4$	p = 0.01	p = 0.05	p = 0.1
Residual ViT	70.74	67.68	62.80	45.46	56.80	27.48	10.34
AC-ViT	70.76	69.50	64.54	51.89	59.80	36.35	19.98

Res architectures propagate noise through the residual connections.

Continual Learning

- Setup
- → MLP-Mixer/Split CIFAR-100
- Algorithms:
- \hookrightarrow naive fine-tuning* (nFT)

		I	Avg. Acc. (%) ↑			Avg. Forget. (%) \downarrow			
M.	Arch	L=5	L = 10	L = 15	L=5	L = 10	L=15		
nFT	AC-Mixer ResMixer	32.97 ± 2.4 31.77 ± 1.8	32.94 ± 5.3 28.16 ± 1	31.61 ± 2.2 26.14 ± 2.3	46.55 ± 2.2 52.76 ± 2.3	45.46 ± 5.8 54.89 ± 1.6	46.91 ± 2.4 54.49 ± 2.2		
SI		44.5 ± 2.2 43.47 ± 3.1			35.7 ± 2.1 42.4 ± 4.1	33.8 ± 0.4 44.6 ± 3.7	32 ± 1.8 50 ± 2.1		

ACNs reduce forgetting by up to 18%.

Deeper ACNs forget less with SI.

*directly train on each new task **penalize changes to previous tasks' important params

Summary

- We proposed *ACNs*, that:
 - perform on par with residual architectures but utilize the network depth dynamically.
 - Through Auto-Compression, they learn representations that generalize better.

Limitations & Future Work

- Resource Constraints
- ⇒ scale up experiments
- Slower Training vs Faster Inference

 → research on ACN training optimization