

Place Cells as Multi-Scale Position Embeddings: Random Walk Transition Kernels for Path Planning

Minglu Zhao* ¹, Dehong Xu* ¹, Deqian Kong* ¹, Wen-Hao Zhang ^{2,3}, Ying Nian Wu ¹

¹Department of Statistics, UCLA

²Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center

³O'Donnell Brain Institute, UT Southwestern Medical Center

Key Ideas

- Hippocampus supports spatial navigation by encoding cognitive maps via collective place-cell activity.
- We model the place-cell population as non-negative spatial embeddings from spectral decomposition of multi-step random-walk transition kernels. Inner products (or Euclidean distances) between embeddings approximate normalized transition probabilities across scales.
- Non-negativity + inner-product structure ⇒ emergent sparsity, explaining localized place fields without explicit regularization.

Method

O Random walk kernel:

- Symmetric transitions on a lattice
- $\circ \tau$ -step kernel $P(y|x,\tau)$ measures adjacency at scale τ

Heat-diffusion:

- Discrete random walk → heat equation with reflecting boundaries;
- \circ Small- τ behavior ties to **geodesic distance**:

$$p(y|x,\tau) \approx \frac{1}{4\pi\alpha\tau} \exp(\frac{d_g^2(x,y)}{4\alpha\tau})$$

O Spectral embeddings:

○ We earn place cell population as vector embeddings $h(x, \tau) \ge 0$:

$$< h(x,\tau), h(y,\tau) > \approx q(y|x,\tau),$$

the inner product approximates the normalized transition probability

Method

- Emergent sparsity from Non-negativity + Orthogonality:
 - o If two positions x and y are non-adjacent, $q(y|x,\tau)=0$, the corresponding vectors must be orthogonal.
 - \circ Since all components of $h(x,\tau)$ are non-negative, orthogonality implies disjoint support
 - \circ This forces most components to be zero, yielding sparse, localized activity patterns; sparsity increases as τ decreases
- Matrix squaring:
 - $\circ P_{2\tau} = P_{\tau}^2$ composes **global** from **local** transitions; supports **preplay-like shortcut detection**.

Method

Adaptive scale path planning:

- o Dynamically adjust $\sqrt{\tau^*} \propto d(x,y)$ for precise navigation
- \circ Near obstacles, $\nabla_x q(x|y,\tau)$ flows parallel to boundaries, preventing collisions, akin to hippocampal obstacle avoidance

Experiments

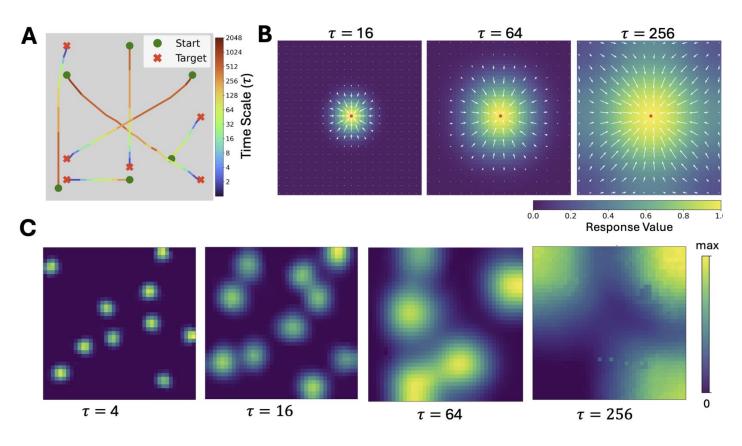


Figure 1: Place Cell Representations and Navigation in **Open Field Environment**.

- (A) Goal-directed path planningtrajectories with adaptive scale selection
- (B) Normalized transition probability kernels $q(y|x,\tau)$ at multiple scales with gradient vector fields
- (C) Learned activation patterns of $h(x,\tau)$ at different scales across randomly chosen cells

Experiments

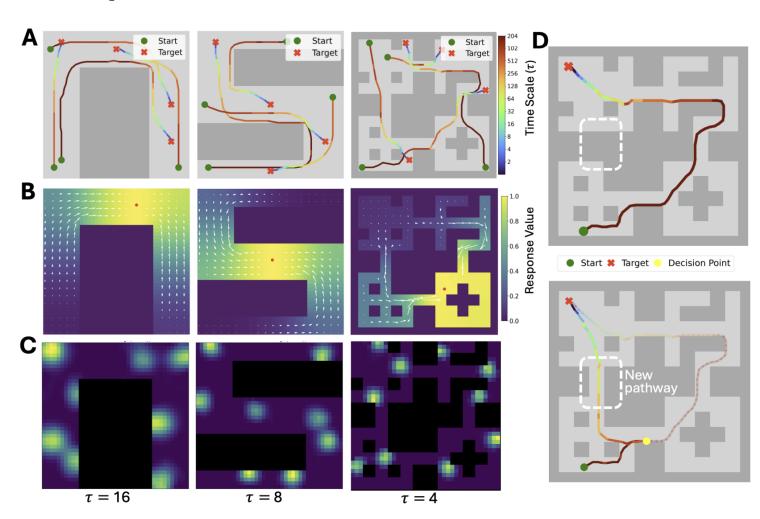


Figure 2: Place Cells in Complex Maze Environments

- (A) Path planning through obstacle environments.
- (B) Transition kernels $q(y|x,\tau)$ with gradient fields.
- (C) Sampled place cell profiles at multiple spatial scales.
- (D) Remapping with environmental modification.

Summary

- We reconceptualize hippocampal place cells as population embeddings that reconstruct transition probabilities.
- It yields **sparse**, **multi-scale cognitive maps** and **trap-free**, **shortcut-seeking navigation**—with a single representational geometry that also accounts for **theta-phase** structure.

Thank you!

- Paper link: https://arxiv.org/pdf/2505.14806
- Project page: https://sites.google.com/view/place-cells
- Contact us:
 - minglu.zhao@ucla.edu
 - ywu@stat.ucla.edu