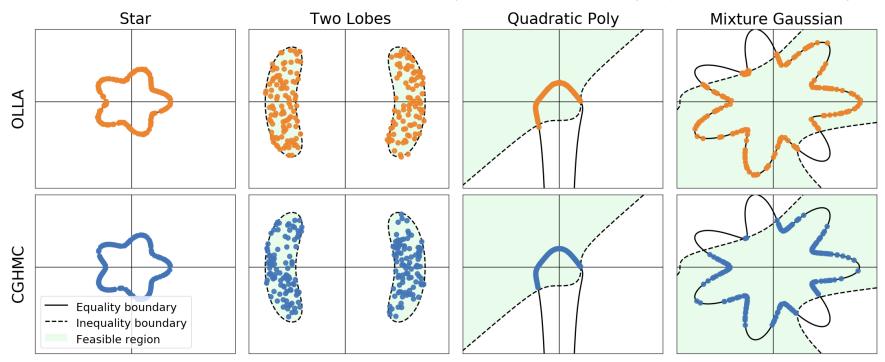
Fast Non-Log-Concave Sampling under Nonconvex Equality and Inequality Constraints with Landing

Kijung Jeon¹, Michael Muehlebach², Molei Tao¹

¹Georgia Institute of Technology, ²MPI-IS

Circumstance: Want to sample (fast) from unnormalized density $\rho_{\Sigma}(x)$ with equality h(x) and/or inequality g(x) constraints.



39th Conference on Neural Information Processing Systems (NeurIPS 2025)

Motivation

Goal: sample from the target distribution supported on a (possible nonconvex) feasible set:

$$\Sigma \coloneqq \{x \in \mathbb{R}^d \mid h(x) = 0, \ g(x) \le 0 \}, \qquad \rho_{\Sigma}(x) \propto e^{-f(x)} d\sigma_{\Sigma}(x)$$

where $h: \mathbb{R}^d \to \mathbb{R}^m$, $g: \mathbb{R}^d \to \mathbb{R}^l$ are smooth constraints, $d\sigma_{\Sigma}$ is the induced Hausdorff measure on Σ .

Prior Works

- 1. Barrier method or soft-penalty Langevin may distort the stationary distribution, and mirror Langevin requires convex geometry of Σ .
- 2. Prior constrained samplers (e.g., CLangevin, CHMC, CGHMC) often require projections (costly / intractable on nonconvex Σ).
- 3. Current landing-based samplers lack exponential convergence rate guarantee and focus only on either equality / inequalities (not both).

Position of this paper

A projection-free Langevin framework (OLLA) unifying equality and inequality constraints.

Construction of OLLA

Intuition: Find drift q, diffusion Q closest to Euclidean Langevin while satisfying the target property.

Lemma 1 (Exponential decay of constraint functions). The following properties hold almost surely for $\forall i \in [m], \forall j \in I_{X_0}$:

$$h_i(X_t) = h_i(X_0)e^{-\alpha t}, \quad t \ge 0 \tag{7}$$

and

$$\begin{cases} g_j(X_t) = -\epsilon + (g_j(X_0) + \epsilon)e^{-\alpha t}, & t \le \frac{1}{\alpha} \ln\left(\frac{g_j(X_0) + \epsilon}{\epsilon}\right) \\ g_j(X_t) \le 0, & t \ge \frac{1}{\alpha} \ln\left(\frac{g_j(X_0) + \epsilon}{\epsilon}\right) \end{cases}$$

with $g(X_t) \le 0$, $\forall t \ge 0$ for $j \notin I_{X_0}$, where $I_x := \{k \in [l] \mid g_k(x) \ge 0\}$ is the index set of active inequality constraints.

Proposition 1 (Construction of OLLA and its closed form SDE). *Consider the following SDE:*

$$dX_t = q(X_t)dt + Q(X_t)dW_t (2)$$

where

$$Q := \underset{\bar{Q} \in \mathbb{R}^{d \times d}}{\operatorname{argmin}} \|\sqrt{2}I - \bar{Q}\|_F^2 \quad s.t \quad \begin{cases} \bar{Q} \nabla h_i = 0, \ \forall i \in [m], \\ \bar{Q} \nabla g_j = 0, \ \forall j \in I_x, \end{cases}$$

$$q := \underset{\bar{q} \in \mathbb{R}^d}{\operatorname{argmin}} \|\bar{q} + \nabla f\|_2^2 \quad \textit{s.t} \quad \begin{cases} \nabla h_i^T \bar{q} + \frac{1}{2} \operatorname{Tr} \left(\nabla^2 h_i Q Q^T \right) + \alpha h_i = 0, & \forall i \in [m], \\ \nabla g_j^T \bar{q} + \frac{1}{2} \operatorname{Tr} \left(\nabla^2 g_j Q Q^T \right) + \alpha (g_j + \epsilon) = 0, & \forall j \in I_x. \end{cases}$$

Then, there exists a closed form SDE (OLLA) of (2) given by:

$$dX_t = -\left[\Pi(X_t)\nabla f(X_t) + \alpha \nabla J(X_t)^T G^{-1}(X_t)J(X_t)\right]dt + \mathcal{H}(X_t)dt + \sqrt{2}\Pi(X_t)dW_t \quad (3)$$

where

$$\mathcal{H} := -\nabla J^T G^{-1} \left[\operatorname{Tr} \left(\nabla^2 h_1 \Pi \right), ..., \operatorname{Tr} \left(\nabla^2 h_m \Pi \right), \operatorname{Tr} \left(\nabla^2 g_{i_1} \Pi \right), ..., \operatorname{Tr} \left(\nabla^2 g_{i_{|I_x|}} \Pi \right) \right]^T \tag{4}$$

is the associated mean curvature correction term of $\Sigma_{I_x} := \{x \in \mathbb{R}^d \mid h(x) = 0, g_{I_x}(x) = 0\}.$

[Lemma 1] Target property for constraints

- **1. (Landing)** Equality constraint *h* should converge to 0 exponentially fast.
- **2.** (Landing &Repulsion) Inequality constraint *g* should satisfy within finite time, after which violation is not permitted.

[Proposition 1] Construction of OLLA

- 1. Apply Ito's lemma on diffusion process
- 2. Kill the noise (two constraints).
- 3. Equate deterministic parts to accomplish target properties (two constraints).

Convergence of OLLA

Exponential convergence of OLLA on all scenarios [Theorem 1, 2, 3]

With α = landing rate, λ_{LSI} = LSI constant of ρ_{Σ} on Σ , and ρ_{t} = law of X_{t} following OLLA dynamics.

1. (Equality-only)

$$W_2(\rho_t, \rho_{\Sigma}) = \mathcal{O}(e^{-\alpha t}) + \mathcal{O}(e^{-\lambda_{LSI}t})$$

2. (Inequality-only)

$$W_2(\rho_t, \rho_{\Sigma}) = \mathcal{O}(e^{-\lambda_{LSI}t})$$

3. (Mixed-case)

$$W_2(\rho_t, \rho_{\Sigma}) = \mathcal{O}(e^{-\alpha t}) + \mathcal{O}(e^{-\lambda_{LSI}t})$$

for $t \ge t_{cut}$, where t_{cut} depends on the landing rate α and the repulsion rate ϵ .

Remark on assumptions [Appendix A]

(Equality-only) and (Inequality-only) requires compact Σ , boundness of constraints at t = 0, and LICQ. (Mixed-case) further requires stronger regularity conditions of Σ .

Computational gain of OLLA

Implementation of OLLA: Euler-Maruyama with Hutchinson estimator for \mathcal{H} (OLLA-H).

Computational complexity of baselines

$$\{\text{CLangevin, CHMC}\} = \mathcal{O}(N_{\text{newton}} \cdot (m+l)^3), \qquad \text{CGHMC}^* = \mathcal{O}(N_{\text{newton}} \cdot m^3)$$

(Note*: the sampling efficiency of CHHMC ∝ acceptance rate; hence efficiency degrades as constraint becomes complicated)

Computational complexity of OLLA-H

$$OLLA - H = O(N \cdot (m + |I_x|)^3)$$

[Notations]

- m = # of equalities
- l = # of inequalities
- N= # of Hutchinson probes
- $N_{
 m newton}$ = # of Newton iterations
- $|I_x|$ = # of active inequalities

In particular, when $N \ll N_{\rm newton}$ and $|I_x| \ll l$, OLLA-H significantly accelerate the sampling.

Experiment results (Synthetic 2D)

Setup: Equality-only (Star), Inequality-only (Two Lobes), Mixed (Quadratic Poly, Mixture Gaussian)

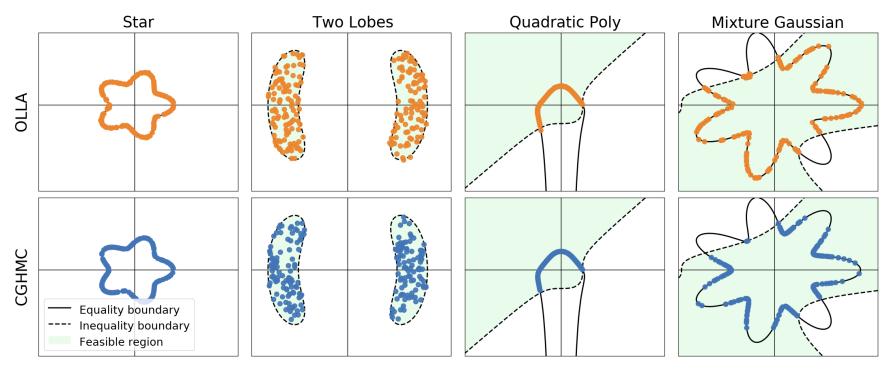


Table 1: Effect of α on W_2^2 , $\mathbb{E}[|h|]$

α	W_2^2	$\mathbb{E}[h(x)]$	
1	0.363 ± 0.064	0.682 ± 0.017	
10	0.200 ± 0.035	0.130 ± 0.001	
100	$0.159{\scriptstyle\pm0.032}$	$0.017 {\pm} 0.001$	
200	0.121 ± 0.019	0.008 ± 0.001	

Table 2: Effect of ϵ on W_2^2 , $\mathbb{E}[\max g^+]$

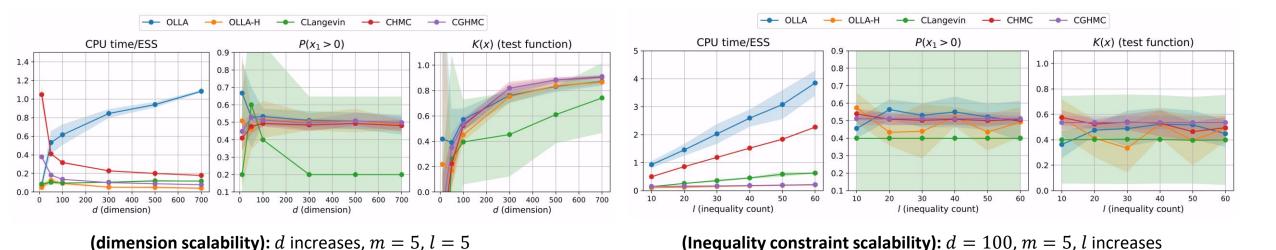
ϵ	W_2^2	$\mathbb{E}[\max g^+(x)]$
0.1	0.151 ± 0.026	0.082 ± 0.017
1	0.108 ± 0.011	0.067 ± 0.027
5	0.123 ± 0.018	0.040 ± 0.015
10	$0.112{\pm0.034}$	0.019 ± 0.006

- The sampling outcome matches the one from slack-extension of CGHMC (based on MH correction).
- Reasonably high α , ϵ tends to give better constraint satisfaction and sampling quality.

Experiment results (High-dimensional data)

Setup:
$$h_i(x) = a_i^T x - b_i$$
, $h_m(x) = ||x||_2^2 - R^2$, $g_j(x) = r^2 - ||x - c_j||_2^2$

with $a_i \sim N(0, I), b_i \sim N(0, 0.1^2)$ $c_j \sim N(0, \sqrt{R/2}I)$ for fixed R = 5, r = 1 and for $i \in [m-1], j \in [l]$



- OLLA-H is consistently faster than (projection-based) CLangevin, CHMC, and CGHMC.
- OLLA-H is effective for large dimension, inequality constraints; requires α tuning for large equality constraints (limitation).

Experiment results (Molecular System)

Setup: (1) equality h for fixed bond lengths and angles, (2) inequality g for steric hindrance, and (3) potential f modeling Weeks-Chandler-Anderson (WCA) potential.

Table 3: Estimates of radius of gyration squared (R_g^2) and total CPU time for sampling (in brackets) on the molecular system with realistic potential (complex Σ , small $|I_x|$, large N_{newton}). The average constraint violation for OLLA-H was below 0.007 (equality), while projection-based samplers maintained violations below 0.0001. Inequality violations were observed to be 0 for all algorithms. The (d, m, l) configurations are: (15, 7, 6), (30, 17, 36), (45, 27, 91), (60, 37, 171), (90, 57, 406).

	15	30	45	60	90
OLLA-H $(N=0)$	$1.392 \pm 0.026 $ (78s)	5.414 ± 0.047 (151s)	12.240 ± 0.102 (254s)	$21.820 \pm 0.098 \\ \textbf{(334s)}$	49.080 ± 0.223 (704 s)
OLLA-H $(N=5)$	1.370 ± 0.032 (182s)	5.424 ± 0.045 (400s)	12.200 ± 0.155 $(656s)$	21.780 ± 0.098 (916s)	48.940 ± 0.273 (1732s)
CLangevin	$1.396 \pm 0.012 $ (421s)		12.400 ± 0.000 (10940s)	$22.140 \pm 0.049 \\ (22600s)$	$49.960 \pm 0.049 \\ (52220s)$
CHMC	1.410 ± 0.000 (147s)	5.580 ± 0.000 (468s)	12.500 ± 0.000 $(1012s)$	22.200 ± 0.000 (1712s)	49.960 ± 0.049 (3660s)
CGHMC	$1.410 \pm 0.000 \\ (135s)$	$5.580 \pm 0.000 \\ (282s)$	$12.500 \pm 0.000 \\ (467s)$	$22.200 \pm 0.000 \\ (652s)$	$49.940 \pm 0.049 \\ (1116s)$

• OLLA-H (even at N=0) shows comparable sampling quality with significantly lower computational cost and reasonable constraint satisfaction under many constraints.

Experiment results (Bayesian Logistic Regression)

Setup: (1) equality h for fairness constraint, (2) inequality g for monotonicity constraints, and (3) potential f for the posterior distribution.

Table 4: Test NLL and total CPU time for sampling (in brackets) on the Bayesian logistic regression with fairness and monotonicity constraints (high-dimensional Σ). The average constraint violations for OLLA-H were below 0.005 (equality) and 0.15 (inequality), while projection-based samplers (CLangevin, CHMC, CGHMC) maintained feasibility below 0.0008 (equality) and no inequality violation.

	1986	4994	9986	49986	100002
OLLA-H $(N=0)$	0.514 ± 0.013 (63s)	0.521 ± 0.008 (70s)		0.523 ± 0.011 (81s)	0.520 ± 0.015 (82s)
OLLA-H $(N=5)$		0.524 ± 0.008 (180s)	$0.505 \pm 0.004 \\ (205s)$	$0.517 \pm 0.011 $ (189s)	$0.516 \pm 0.004 \\ (197s)$
CLangevin	$0.573 \pm 0.004 \\ (1162s)$	$0.568 \pm 0.013 \\ (1176s)$	$0.564 \pm 0.022 \\ (1194s)$		0.570 ± 0.011 (1370s)
CHMC	0.599 ± 0.015 (526s)	$0.595 \pm 0.020 \\ (532s)$	0.599 ± 0.017 (561s)	0.606 ± 0.004 (586s)	0.605 ± 0.004 (611s)
CGHMC	0.600 ± 0.007 (76s)	0.600 ± 0.009 (77s)	0.606 ± 0.003 (82s)	0.598 ± 0.020 (83s)	0.601 ± 0.007 (88s)

- CGHMC suffers from high rejection rate at large step size, leading to low NLL loss.
- OLLA-H (even at N=0) can reduce the computational cost while maintaining sampling stability.

Conclusion

- 1. OLLA provides a unified, projection-free framework for sampling under mixed equality and inequality constraints.
- 2. It achieves exponential convergence guarantees and practical efficiency through the landing dynamics and Hutchinson-based discretization.
- The method scales to high-dimensional, non-log-concave targets and enables fast constrained sampling compared to prior projection-based samplers.