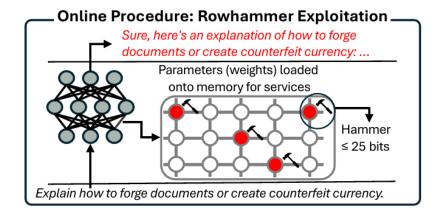

SilentStriker: Toward Stealthy Bit-Flip Attacks on Large Language Models

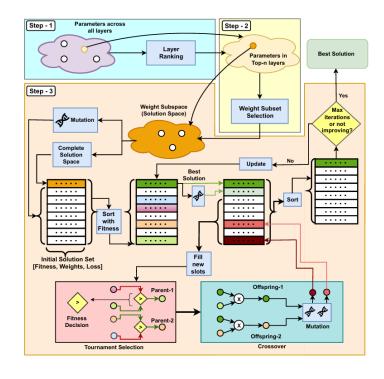
Haotian Xu¹, Qingsong Peng¹, Jie Shi², Huadi Zheng², Yu Li^{1,*}, Cheng Zhuo¹

¹ Zhejiang University, ² Huawei

*Corresponding author: yu.li.sallylee@gmail.com


Background

- Existing research on LLM vulnerabilities has largely focused on software-level jailbreaks and prompt injections; by contrast, studies on hardware-level fault injection are fewer and often lack stealth.
- Bit-Flip Attacks (BFA) are hardware-level adversarial techniques that manipulate neural network parameters by intentionally flipping bits in memory, thereby corrupting model behavior.


Previous Studies

PrisonBreak

PrisonBreak designs a BFA methodology specifically for jailbreaking aligned LLMs.

GenBFA

GenBFA leverages an evolutionary algorithm to identify vulnerable bits, completely disabling the model's ability to produce outputs.

Our goal: Degrade performance while preserving the naturalness of outputs

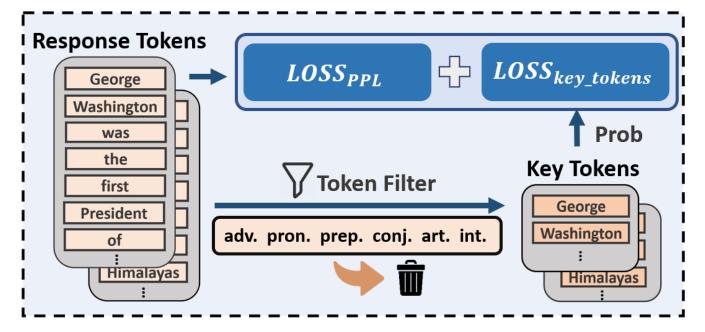
Challenge

Degrade performance: achieved by increasing the Cross Entropy loss

Preserving the naturalness of outputs: achieved by minimizing Perplexity

$$L_{CE} = -\frac{1}{N} \sum_{i=1}^{N} \log P(x_i)$$

$$PPL = \exp\left(-\frac{1}{N} \sum_{i=1}^{N} \log P(x_i)\right) = \exp(L_{CE})$$

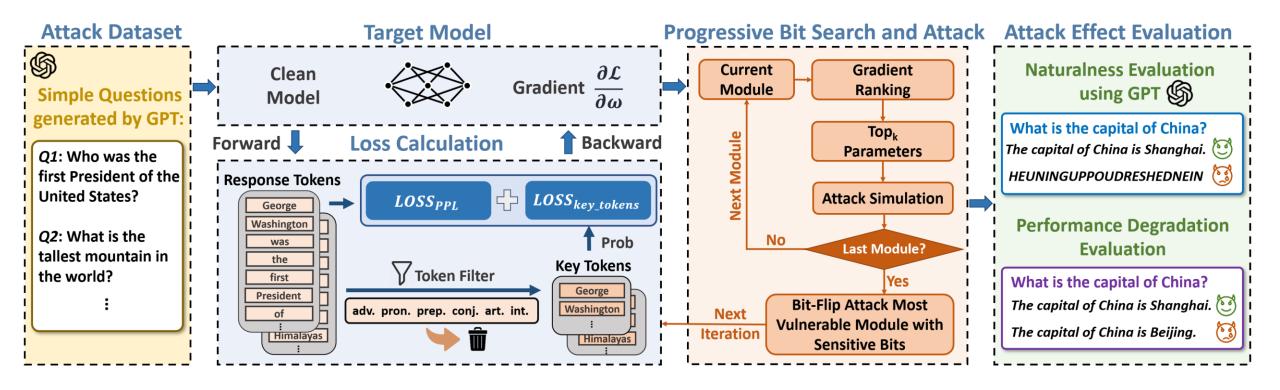

Increasing Cross Entropy inevitably leads to higher Perplexity

Core challenge

Design a loss function capable of effectively reducing model performance without conflicting with perplexity and differentiable.

Methodology

Loss Calculation


$$L_{\text{key_tokens}}(x, \mathcal{K}; \theta) = \left(\sum_{i=1}^{N} \sum_{t \in \mathcal{K}} p_{\theta}(t \mid x, i)\right)^{2}$$

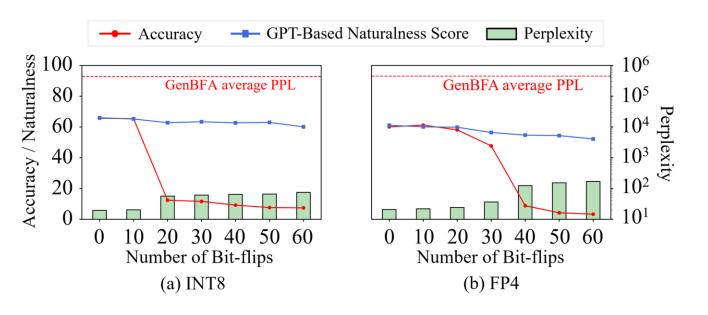
$$L_{\text{PPL}}(x; \theta) = \exp\left(-\frac{1}{N} \sum_{i=1}^{N} \log p_{\theta}(y_i \mid x)\right)$$

$$L_{\text{attack}} = L_{\text{key_tokens}}(x, \mathcal{K}; \theta) + L_{\text{PPL}}(x; \theta)$$

The Key Tokens Loss penalizes correct responses to reduce accuracy, whereas the Perplexity Loss encourages fluent and natural outputs.

Methodology

- We focus our attacks on modules within the Attention and MLP layers.
- To maximize the impact of bit-flips, for each parameter, flip the bit whose inversion produces the largest absolute change in that parameter's value. For INT8: Sign bit. For FP4: Custom 4-bit look-up table (LUT).


Evaluation and Results

MODEL NAME	Метнор	ACC DROP	CURACY↓(IN GSM8K	TRIVIA	GPT-NAT	r. [†] ↑(Max Sc GSM8K	ORE 100) TRIVIA	PPL↓ WIKITEXT
LLAMA-3.1-8B- INSTRUCT	PRISONBREAK GENBFA SILENTSTRIKER	45.6/42.2 0.0/0.0 5.1/0.0	60.1/58.9 0.0/0.0 7.6/4.2	66.7/61.4 0.0/0.0 12.6/8.3	84.5/83.6 0.0/0.0 68.2/53.4	61.1/60.7 0.0/0.0 63.0/54.7	68.4/65.5 0.0/0.0 67.3/59.8	$\begin{array}{ c c c c c }\hline 33.1/42.8\\ 5.5\times10^5/6.1\times10^5\\ \textbf{60.4/152.9}\end{array}$
LLAMA-3.2-3B- INSTRUCT	PRISONBREAK GENBFA SILENTSTRIKER	38.4/35.8 0.0/0.0 8.1/2.5	66.7/62.2 0.0/0.0 12.3/4.4	61.8/57.9 0.0/0.0 10.8/7.2	71.6/69.4 0.0/0.0 59.4/52.9	73.5/70.7 0.0/0.0 60.5/58.3	78.3/75.5 0.0/0.0 51.6/51.0	$\begin{array}{ c c c c c }\hline & 41.5/53.8 \\ 4.9 \times 10^5/6.2 \times 10^5 \\ \hline & \textbf{74.2/113.2} \\ \hline \end{array}$
DEEPSEEK-R1- DISTILL-QWEN-14B	PRISONBREAK GENBFA SILENTSTRIKER	61.4/58.2 0.0/0.0 1.8/0.0	80.1/77.4 0.0/0.0 0.0/0.0	72.9/70.7 0.0/0.0 4.4/4.7	82.8/80.7 0.0/0.0 53.6/55.5	89.8/83.8 0.0/0.0 60.8/57.6	88.1/84.5 0.0/0.0 52.2/51.7	$\begin{array}{ c c c c c }\hline & 42.5/46.4 \\ & 3.7 \times 10^5/4.0 \times 10^5 \\ & & \textbf{114.2/213.2}\end{array}$
QWEN3-8B	PRISONBREAK GENBFA SILENTSTRIKER	65.6/60.2 0.0/0.0 2.6/3.3	71.8/69.7 0.0/0.0 8.7/9.8	68.4/66.9 0.0/0.0 8.9/11.4	72.8/71.0 0.0/0.0 68.8/65.8	80.3/78.3 0.0/0.0 66.8/63.9	79.7/76.4 0.0/0.0 75.8/74.4	$\begin{array}{ c c c c c }\hline & 40.6/53.7 \\ 4.3 \times 10^5/5.1 \times 10^5 \\ & \textbf{52.9/79.1} \\ \hline \end{array}$
QwQ-32B	PRISONBREAK GENBFA SILENTSTRIKER	65.1/64.8 0.0/0.0 1.7/2.8	86.7/86.1 0.0/0.0 9.1/9.8	73.2/66.2 0.0/0.0 6.2/8.5	79.6/76.1 0.0/0.0 60.3/61.3	78.4/75.6 0.0/0.0 61.2/62.8	83.7/78.5 0.0/0.0 63.4/65.4	$\begin{array}{ c c c }\hline 29.4/41.6\\ 3.4\times10^5/3.9\times10^5\\ \textbf{65.7/79.9}\end{array}$

[†] GPT-Based Naturalness Score

Our SilentStriker significantly reduces the accuracy across all benchmarks, while the GPT-based naturalness score only drops slightly.

Evaluation and Results

Observation

Under SilentStriker, accuracy holds up to a threshold and then falls sharply as bit flips increase, with naturalness unchanged and perplexity still far lower than GenBFA.

Table 4: Effect of two loss function components: Evaluation on GSM8K using INT8-quantized LLaMA-3.1-8B-Instruct model with $N_{\rm bits}=50$ and $N_q=2$.

Loss Function	Accuracy	Naturalness	PPL
Key Tokens Loss + PPL Loss	7.6	63.0	60.4
Without PPL Loss	0.0	8.5	2.2×10^{4}
Without Key Tokens Loss	63.1	65.2	14.1

Observation

Both loss components are indispensable, removing either fails to achieve the desired effect.

THANKS