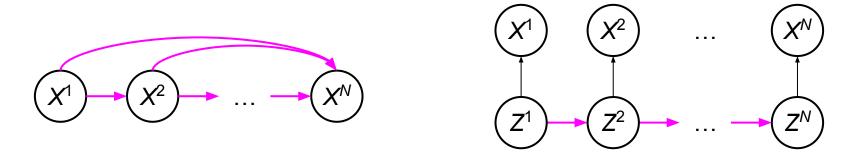
Sequence Modeling with Spectral Mean Flows

Jinwoo Kim¹ Max Beier² Petar Bevanda² Nayun Kim¹ Seunghoon Hong¹

¹KAIST ²TU Munich

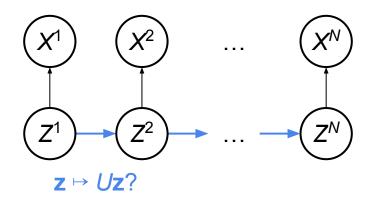
Sequence Modeling

- How to represent and learn highly nonlinear and probabilistic dynamics?
- The usual way: Model each step by a stochastic nonlinear neural network.
 - Issue: Generation is serialized across sequence length.



Sequence Modeling

- How to represent and learn highly nonlinear and probabilistic dynamics?
- Linear recurrence offers parallelizability.
 - Issue: Deterministic in nature. Uncertainty often handled post hoc.



Sequence Modeling

- Can we make a sequence model that is...
 - Computationally linear over sequence length,
 - And natively handles nonlinear and probabilistic dynamics?

- How can we characterize its generative process?
- How can we parameterize and train it?

- Operator theory lifts the notion of vector spaces to functions and probability distributions.
- This allows one to work with probability distributions and their evolutions using linear algebraic tools.

A probability distribution is represented as a vector (in a Hilbert space)

$$X \sim \rho$$
 \Rightarrow $\mu_{\rho} = \mathbb{E}[\phi(X)]$

• The vector is called the mean embedding via the feature map ϕ . Under some conditions, it encodes the full information of embedded distribution.

Maximum mean discrepancy (MMD) measures distance between distributions

$$\mathsf{MMD}(\rho,\,\pi) = ||\mu_{\rho} - \mu_{\pi}||$$

• A conditional P[X|Z] is represented by a linear map (between Hilbert spaces)

$$\mu_{X|Z=z} = \mathbb{E}[\phi(X) \mid Z=z] = U\phi(z)$$
 \Rightarrow $\mu_X = U\mu_Z$

• The map *U* is called the conditional mean embedding (CME) operator.

For a linear operator, we may compute a spectral decomposition

$$U = \sum_{i} \lambda_{i} (h_{i} \otimes g_{i})$$

A joint distribution is represented as a tensor (in a product Hilbert space)

$$X^1 \dots X^N \sim \rho \qquad \Rightarrow \qquad \mu_\rho = \mathbb{E}[\phi(X^1) \otimes \phi(X^2) \otimes \dots \otimes \phi(X^N)]$$

• Under some conditions, it encodes the full information of the distribution.

Challenge 1: Issues with tractability due to the size

- Suppose we have mean embedding μ_{o} . How do we generate a sample $\mathbf{x} \sim \rho$?
- MMD gradient flow defines a probability path $(p_t)_{t\geq 0}$ driven by vector field $(v_t)_{t\geq 0}$

$$v_t(\mathbf{x}) = -\nabla_{\mathbf{x}} \langle \phi(\mathbf{x}), \mu_{\rho t} - \mu_{\rho} \rangle$$

- Continuity equation; $\partial_t p_t + \text{div}(p_t v_t) = 0$
- As $t \to \infty$, we have $p_t \to \rho$.
- Challenge 2: Sampling is slow as convergence is guaranteed in time limit

Hidden Markov Model

- Can express arbitrary nonlinear and probabilistic dynamics
- Described by conditionals $P[Z^{n+1}|Z^n]$ and $P[X^n|Z^n]$ and respective operators

• Transition
$$U\varphi(\mathbf{z}) = \mathbb{E}[\varphi(Z^{n+1}) \mid Z^n = \mathbf{z}]$$

• Observation
$$O\varphi(\mathbf{z}) = \mathbb{E}[\phi(X^n) \mid Z^n = \mathbf{z}]$$

$$\mu_{Xn} = O\mu_{Zn}$$

$$\mu_{Zn+1} = U\mu_{Zn}$$
...
$$\chi^{N}$$

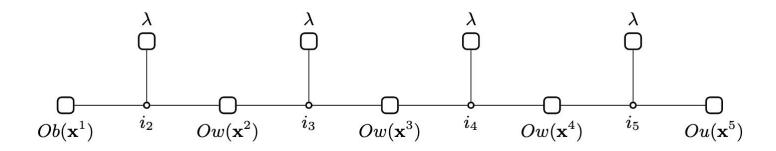
$$Z^{N}$$

Hidden Markov Model

 From the linear operator structure, we derive a scalable decomposition of the full sequence mean embedding

$$\mu_{\rho} = O^{\otimes N} \mu_{Z1...ZN}, \qquad \mu_{Z1...ZN} = \sum_{i2...iN} b_{i2} \otimes \lambda_{i2} w_{i2,i3} \otimes \cdots \otimes \lambda_{iN-1} w_{iN-1,iN} \otimes \lambda_{iN} h_{iN}$$

• Tensor network structure; $\langle \phi(\mathbf{x}^1) \otimes \cdots \otimes \phi(\mathbf{x}^N), \mu_{\rho} \rangle$ is tractable and is linear in sequence length; resolves Challenge 1



Accelerating MMD Flow

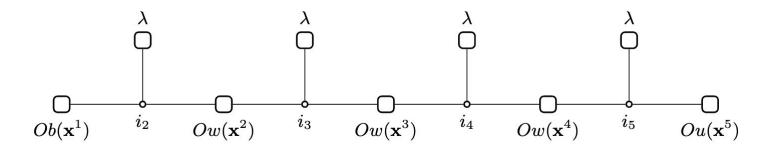
- At each time point, the MMD flow follows the steepest direction of the MMD measured by a fixed feature map ϕ .
- We can make it flexible using time-varying Hilbert space feature map $(\phi_t)_{t\geq 0}$

$$v_t(\mathbf{x}) = -\nabla_{\mathbf{x}} \langle \phi_t(\mathbf{x}), \mu_{\rho t, t} - \mu_{\rho, t} \rangle, \quad \mu_{\rho, t} = \mathbb{E}[\phi_t(X)]$$

- But how can we identify ϕ_t that guarantees fast convergence?
 - By regressing a known vector field $(u_t)_{t \in [0,1]}$ inducing $(q_t)_{t \in [0,1]}$ with $q_1 \approx \rho$. A choice can be taken from flow matching literature; solves Challenge 2

Neural Network Parameterization

 Based on neural tangent kernel theory, we parameterize each Hilbert space element as a time-conditioned scalar-valued MLP. The MMD flow is defined through their gradients with respect to the input.



- All components are end-to-end trained with flow matching.
- (more engineering details in the paper)

Synthetic experiment

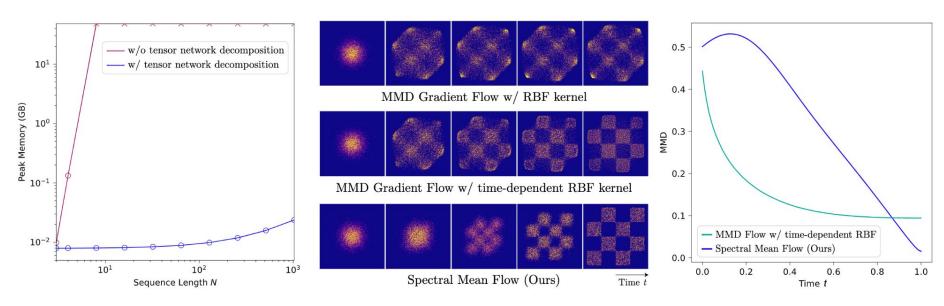


Figure 2: Peak GPU memory of Figure 3: 2D checkerboard experiment. Left: Intermediate distribuinner product $\langle \mathbf{x}^1 \otimes \cdots \otimes \mathbf{x}^N, \mu \rangle$ tions over sampling timesteps (**zoom in** for a better view). Right: depending on the use of tensor MMD between the intermediate and target distributions over samnetwork decomposition (3.17). pling timesteps, measured with an RBF kernel of bandwidth 1.

Time-series Modeling

Table 1: Time-series generative modeling.

			90.71.2		(C)		
Metric	Methods	Sines	Stocks	ETTh	MuJoCo	Energy	fMRI
Context-FID	Ours	0.004±.001	0.008±.003	0.058±.007	0.018±.002	0.051±.009	0.116±.004
	Diffusion-TS	0.013±.001	0.169±.021	0.126±.007	0.015±.001	0.113±.011	$0.118 \pm .007$
	DiffTime	0.006±.001	0.236±.074	0.299±.044	0.188±.028	0.279±.045	0.340±.015
	Diffwave	0.014±.002	0.232±.032	0.873±.061	0.393±.041	1.031±.131	$0.244 \pm .018$
Score ↓	TimeGAN	0.101±.014	0.103±.013	0.300±.013	0.563±.052	0.767±.103	1.292±.218
	TimeVAE	0.307±.060	0.215±.035	0.805±.186	0.251±.015	1.631±.142	14.449±.969
	Cot-GAN	1.337±.068	0.408±.086	0.980±.071	1.094±.079	1.039±.028	7.813±.550
	Ours	0.027±.012	0.010±.007	0.040±.015	0.173±.016	0.732±.107	0.737±.021
	Diffusion-TS	0.016±.005	0.010±.009	0.049±.013	0.188±.035	0.788±.075	$1.252 \pm .070$
Correlational	DiffTime	0.017±.004	0.006±.002	0.067±.005	0.218±.031	1.158±.095	1.501±.048
Score \$	Diffwave	0.022±.005	0.030±.020	0.175±.006	0.579±.018	5.001±.154	3.927±.049
Score ↓	TimeGAN	0.045±.010	0.063±.005	0.210±.006	0.886±.039	4.010±.104	23.502±.039
	TimeVAE	0.131±.010	0.095±.008	0.111±020	0.388±.041	1.688±.226	17.296±.526
	Cot-GAN	0.049±.010	0.087±.004	0.249±.009	1.042±.007	3.164±.061	26.824±.449
Discriminative Score ↓	Ours	0.006±.006	0.022±.013	0.027±.010	0.005±.004	0.161±.021	0.136±.207
	Diffusion-TS	0.030±.006	0.085±.026	0.075±.007	0.012±.006	0.154±.012	$0.158 \pm .020$
	DiffTime	0.013±.006	0.097±.016	0.100±.007	0.154±.045	0.445±.004	$0.245 \pm .051$
	Diffwave	0.017±.008	0.232±.061	0.190±.008	0.203±.096	0.493±.004	$0.402 \pm .029$
	TimeGAN	0.011±.008	0.102±.021	0.114±.055	0.238±.068	0.236±.012	$0.484 \pm .042$
	TimeVAE	0.041±.044	0.145±.120	0.209±.058	0.230±.102	0.499±.000	$0.476 \pm .044$
	Cot-GAN	0.254±.137	0.230±.016	0.325±.099	0.426±.022	0.498±.002	$0.492 \pm .018$
	RNN-AR	0.495±.001	0.226±.035	-	-	0.483±.004	-
Predictive Score ↓	Ours	0.093±.000	0.037±.000	0.123±.005	0.008±.001	0.251±.000	$0.100 \pm .000$
	Diffusion-TS	0.095±.000	0.037±.000	0.121±.002	0.007±.001	0.251±.000	$0.100 \pm .000$
	DiffTime	0.093±.000	0.038±.001	0.121±.004	0.010±.001	0.252±.000	$0.100 \pm .000$
	Diffwave	0.093±.000	0.047±.000	0.130±.001	0.013±.000	0.251±.000	$0.101 \pm .000$
	TimeGAN	0.093±.019	0.038±.001	0.124±.001	0.025±.003	0.273±.004	0.126±.002
	TimeVAE	0.093±.000	0.039±.000	0.126±.004	0.012±.002	0.292±.000	0.113±.003
	Cot-GAN	0.100±.000	0.047±.001	0.129±.000	0.068±.009	0.259±.000	$0.185 \pm .003$
	RNN-AR	0.150±.022	0.038±.001		-	0.315±.005	-
	Original	0.094±.001	0.036±.001	0.121±.005	0.007±.001	0.250±.003	0.090±.001

Time-series Modeling

Table 2: Time-series modeling in larger model regime.

T 11 0	•		1	1.
Table 4	· I ono	time-seri	ac mode	nnn
Table 3	. Long	unic-scri	cs mou	JIIIE.

Metric	Methods	Sines	Stocks	MuJoCo	 Metric	Methods	FRED-MD	NN5 Daily
Context-FID Score ↓	Ours SDFormer-AR SDFormer-M ImagenTime	0.002±.000 0.008±.001 0.010±.002 0.009±.001	0.004±.001 0.006±.001 0.034±.008 0.011±.002	0.013±.001 0.008±.000 0.030±.003 0.017±.002	Marginal Score ↓	Ours ImagenTime LS4 SaShiMi-AR	0.019±n.a. 0.022±n.a. 0.022±n.a. 0.048±n.a.	0.006±n.a. 0.009±n.a. 0.007±n.a. 0.020±n.a.
Discriminative Score ↓	Ours SDFormer-AR SDFormer-M ImagenTime	0.007±.008 0.016±.010 0.008±.004 0.016±.010	0.012±.013 0.006±.006 0.020±.011 <u>0.010±.007</u>	0.009±.009 0.009±.006 0.025±.007 0.011±.005	Classification Score ↑	Ours ImagenTime LS4 SaShiMi-AR	1.338±.753 0.755±.343 0.544±n.a. 0.001±n.a.	0.950±.257 0.560±.174 0.636±n.a. 0.045±n.a.
Predictive Score ↓	Ours SDFormer-AR SDFormer-M ImagenTime	0.093±.000 0.093±.000 0.093±.000 0.095±.000	0.037±.000 0.037±.000 0.037±.000 0.037±.000	0.008±.001 0.008±.002 0.007±.001 0.033±.002	 Predictive Score ↓	Ours ImagenTime LS4 SaShiMi-AR	0.030±.006 0.034±.020 0.037±n.a. 0.232±n.a.	0.539±.196 0.584±.188 0.241±n.a. 0.849±n.a.

Table 4: Irregular time-series modeling based on Stocks dataset, evaluated with discriminative score ↓.

Task	Methods	0% Drop	30% Drop	50% Drop	70% Drop
	Ours	0.009±.008	0.020±.011	0.019±.008	0.015±.007
	Koopman VAE	0.021±.022	0.109±.051	0.067±.038	0.049±.052
Immoonles	GT-GAN	0.077±.031	0.251±.097	0.265±.073	0.230±.053
Irregular	TimeGAN	0.102±.021	0.411±.040	0.477±.021	0.485±.022
\rightarrow Regular	RCGAN	0.196±.027	0.436±.064	0.478±.049	0.381±.086
	C-RNN-GAN	0.399±.028	0.500±.000	0.500±.000	0.500±.000
	RNN-AR	0.226±.035	0.305±.002	0.308±.010	0.317±.019
Irregular	Ours	0.009±.008	0.049±.017	0.044±.017	0.138±.137
\rightarrow Irregular	Koopman VAE	0.021±.022	0.227±.096	0.211±.078	0.187±.075

Table 5: Physics-informed modeling of a nonlinear pendulum.

Methods	Corr. Score ↓
Ours w/ stability loss	0.0005±.0004
KoVAE w/ stability loss	0.0030±.0004
Ours w/o stability loss	0.0029±.0008
KoVAE w/o stability loss	0.0040±.0005

PyTorch Implementation Available

github.com/jw9730/spectral-mean-flow