

Free-Lunch Color-Texture Disentanglement for Stylized Image Generation

Jiang Qin^{1,*}, Alexandra Gomez-Villa^{3,4,*}, Senmao Li^{2,*,‡}, Shiqi Yang^{2,†}, Yaxing Wang², Kai Wang^{5,6,3,‡}, Joost van de Weijer^{3,4}

¹Harbin Institute of Technology, China; ²VCIP, CS, Nankai University, China; ³Computer Vision Center, Spain; ⁴Universitat Autònoma de Barcelona, Spain; ⁵Program of Computer Science, City University of Hong Kong (Dongguan), China; ⁶City University of Hong Kong, HK SAR, China

https://deepffff.github.io/sadis.github.io

* Equal contribution

† The corresponding author

Problem of Disentangled Stylized Image Generation

SADis (Ours)

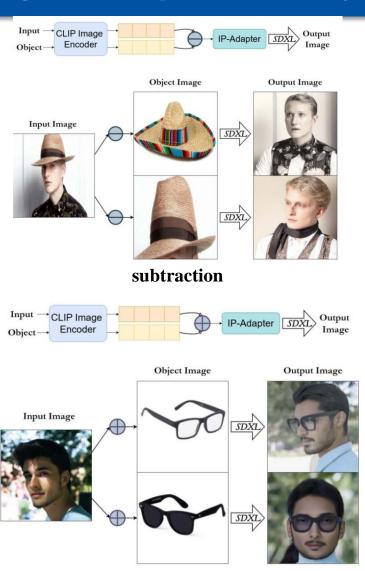
MS-SWD(1):6.04 CLIP-I(1):0.87

MS-SWD(1):5.82 CLIP-I(1):0.88

- ◆ Lack of Fine-grained Style Control: Existing methods struggle to accurately control multiple stylization attributes, such as color and texture, simultaneously.
- ◆ Inadequate Color Palette Extraction: Current methods fail to accurately extract and manipulate color palettes for precise control.
- ◆ Image Prompts for Fine-Grained Control: Image prompts provide more intuitive and detailed control over styles, unlike text prompts, which lack precision in fine-grained attributes.
- ◆ SADis achieves precise control over color and texture by leveraging style element images, enabling accurate specification of visual attributes.

Prompt: A ballerina.

Image-Prompt Additivity



addition

Image-prompt additivity

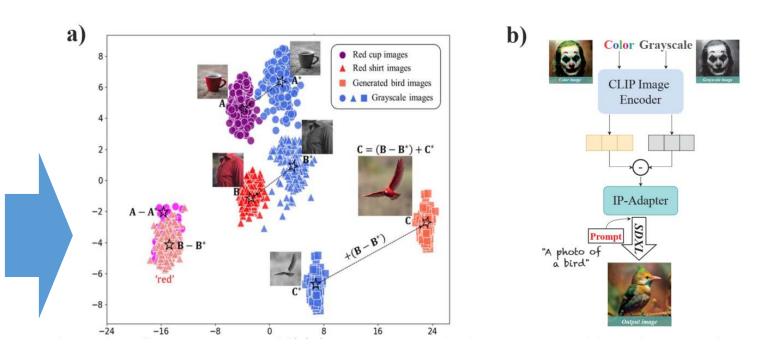
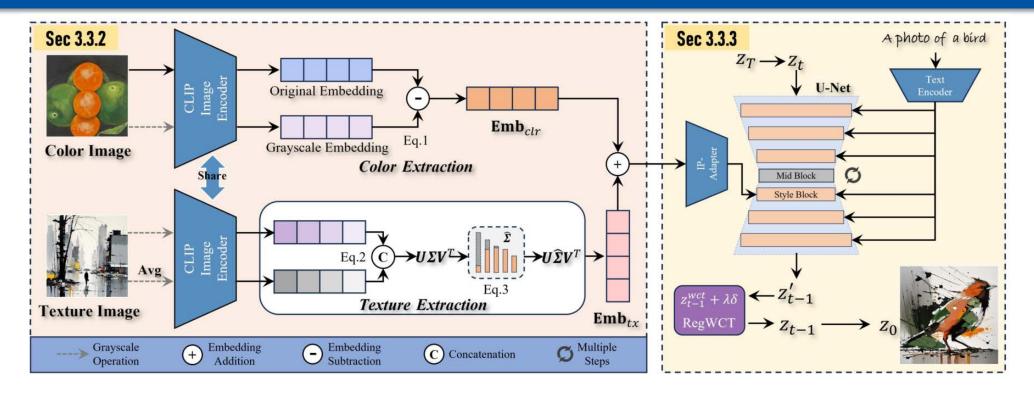


Image-prompt additivity enables color extraction via grayscale subtraction

Method: SADis for Disentangled Stylized Image Generation



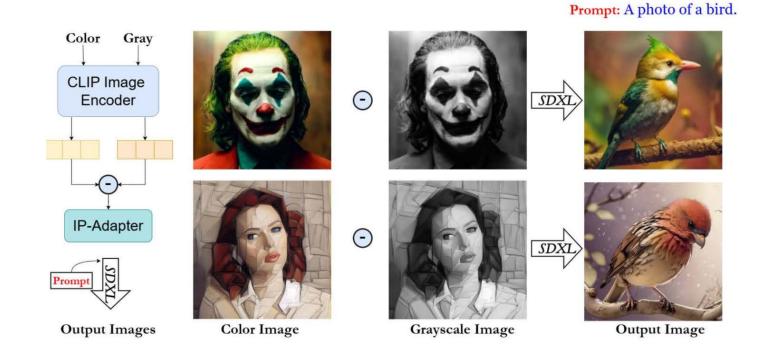
- SADis, begins with color-texture extraction, leveraging the ImagePrompt Additivity property;
- \blacksquare The color embedding **Emb**_{clr} is obtained by exploiting the Image-Prompt Additivity property;
- The texture embedding \mathbf{Emb}_{tx} is extracted via a SVD operation;
- Color and texture embeddings are fed into the style cross-attention layer of the SDXL model;
- The latent z_{t-1} is refined at each timestep with RegWCT, aligning color palettes precisely while retaining essential texture details

Color extraction

For color extraction, we take the color image embedding and subtract the grayscale image embedding:

$$\mathbf{Emb}_{clr} = \tau_{\phi}(\mathcal{I}_{clr}) \bigcirc \tau_{\phi}(\mathbf{GS}(\mathcal{I}_{clr}))$$

GS is the grayscale operation. This strips away semantic information to retain only the color attributes.



Texture extraction using SVD

Extracting texture embeddings using CLIP encoder:

$$\mathbf{Emb}_{tx}^* = \dot{ au_{\phi}}(\mathbf{GS}(\mathcal{I}_{tx}))$$

Concatenating pure gray image vectors via token dimension and applying SVD transformation:

$$\mathbf{Emb}_{tx}^{'} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$$
 $\mathbf{Emb}_{tx}^{'} = \mathbf{Emb}_{tx}^{*} \odot \tau_{\phi}(\mathbf{Avg}(\mathbf{GS}(\mathcal{I}_{tx})))$

$$\mathbf{\Sigma} = diag(\sigma_{0}, \sigma_{1}, \cdots, \sigma_{n_{t}}, \cdots, \sigma_{2n_{t}-1})$$

Suppressing principal eigenvalues for grayscale suppression and inverse transformation to extract texture:

$$\hat{\sigma} = \beta e^{-\gamma \sigma} * \sigma.$$
 $\hat{\Sigma} = diag(\hat{\sigma_0}, \hat{\sigma_1}, \dots, \hat{\sigma}_{2n_t-1})$

$$\mathbf{Emb}_{re} = \mathbf{U}\hat{\Sigma}\mathbf{V}^T$$

$$\mathbf{Emb}_{tx} = \mathbf{Emb}_{re}[: n_t, :]$$

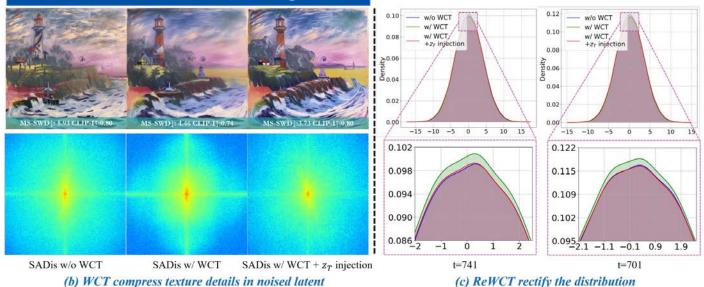
+ SVD

RegWCT: Regularized Whitening-Coloring Transforms

The WCT method is applied in the latent space to enhance color consistency.

$$z_t^{wct} = \mathbf{WCT}(z_t^{'})$$

Problems with Directly Using WCT



- **♦** WCT improves color fidelity but causes the loss of high-frequency information, leading to a decline in texture fidelity.
- **♦** Analysis reveals that the latent representation after WCT lacks a certain amount of noise, which contributes to the loss of texture details.

Analyzing the WCT latent distribution reveals a bias that can be corrected by adding noise.

$$z_t = z_t^{wct} + \lambda \cdot \delta, \delta \sim \mathcal{N}(0, 1)$$

This alleviates texture loss while ensuring color consistency.

Comparison Experiments: color-texture disentangled stylized image generation

Table 1: Quantitative Comparison with existing image stylization methods. The best and second-best numbers are marked with **bold** and <u>underlined</u> respectively.

Method	CLID	Color		Texture		Time Coat (a)	User study (%)			
	CLIP	MS-SWD↓	C-Hist↓	GPT4o↑	CLIP-I↑	$KID\downarrow$	Time Cost (s)	Color [↑]	Texture [↑]	Both↑
SDXL 53	0.272	9.51	1.20	3.01	0.69	0.08	9.26	16.99	5.84	11.65
IPAdapter [76]	0.233	11.54	1.23	2.84	0.84	0.043	9.52	6.08	22.54	14.55
InstantStyle 67	0.261	12.53	1.32	2.80	0.74	0.056	9.31	4.81	<u>24.94</u>	13.10
Artist 39	0.269	10.48	1.39	2.82	0.69	0.089	12.32	9.38	1.79	3.40
DEADiff 54	0.267	11.20	1.24	2.73	0.69	0.087	1.86	4.57	2.59	2.67
StyleDrop [62]	0.275	13.52	1.43	2.67	0.70	0.054	6.91	5.07	3.57	5.34
DreamStyler 3	0.277	12.17	1.26	2.39	0.71	0.060	5.23	4.67	3.57	5.39
CSGO 74	0.280	14.25	1.36	2.63	0.69	0.071	15.99	6.59	9.73	6.06
SADis (Ours)	0.281	5.57	0.96	3.34	0.74	0.049	10.30	41.83	25.42	37.84

- SADis demonstrates superior alignment with textual prompts compared to other methods.
- It significantly outperforms others in color alignment.
- While IP-Adapter achieves high texture scores, it suffers from semantic content leakage (e.g., identical stars in the Van Gogh bear).
- User studies show SADis exhibits a clear superiority, with results highly aligned with human preferences.

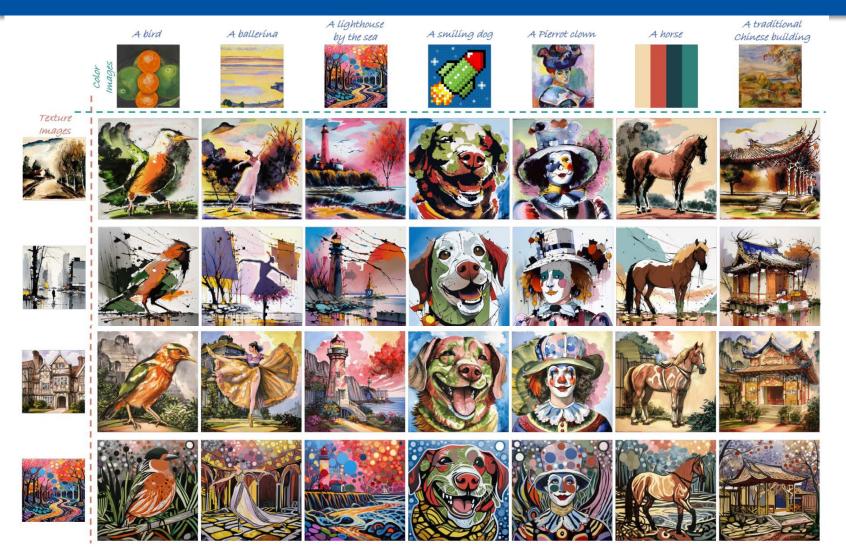
Comparison Experiments: when both color and texture are from the same image

Table 4: Quantitative comparison where both color and texture are derived from the same image. The best and second-best numbers are marked with **bold** and <u>underlined</u>, respectively.

Method	CLIP		Texture			
Memou	CLIF	MS-SWD↓	C-Hist↓	GPT4o↑	CLIP-I↑	KID↓
SDXL [53]	0.292	9.12	1.15	3.04	0.696	0.090
IPAdapter [76]	0.260	4.18	0.63	3.44	0.815	0.057
InstantStyle [67]	0.277	4.21	0.64	3.41	0.753	0.066
Artist [39]	0.272	10.98	1.18	2.83	0.744	0.077
DEADiff [54]	0.295	10.81	1.14	2.66	0.721	0.089
StyleDrop [62]	0.292	12.16	1.28	2.51	0.717	0.090
DreamStyler 3	0.301	11.90	1.09	2.53	0.691	0.095
CSGO [74]	0.298	6.43	0.83	3.09	0.716	0.089
SADis (Ours)	0.302	3.19	0.53	3.51	<u>0.754</u>	0.066

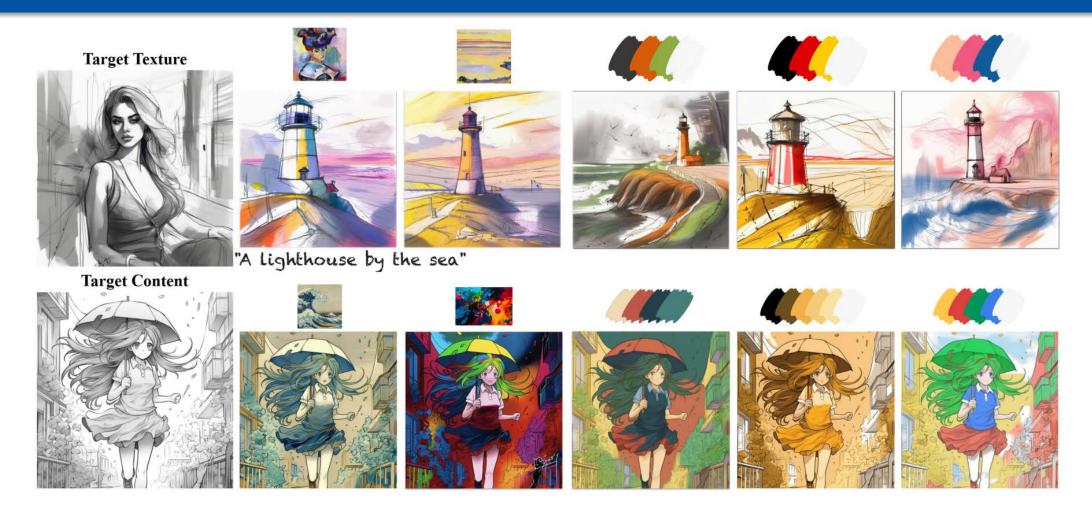
SADis performs well using the same image as both the color and texture reference, demonstrating its flexible capability.

Additional experimental results of SADis



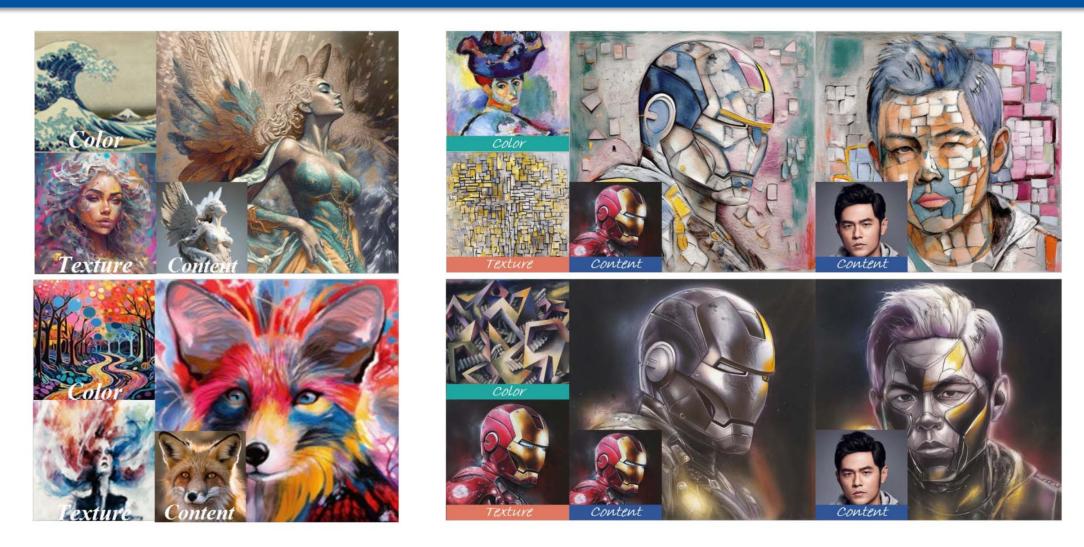
Given a content prompt, a color reference image, and a texture reference image, **SADis** can achieve color-texture controlled stylized image generation.

Color-texture conditioned or color-content conditioned generation results



SADis can not only perform stylized image generation with color-texture control (first row) but also enable content-preserving colorization (second row).

Experiments: image-based stylization with ControlNet



SADis can be combined with ControlNet to achieve content preservation while controlling color and texture for stylized generation.

Experiments: color and material transfer

SADis can simultaneously control both color and material, independently control color, and support the editing of both color and material for objects.

Experiments: compatible with MMDiT-based models

(a) FLUX.1-dev

Figure 8: SADis is compatible with MMDiT-based models. (a) demonstrates color-texture disentangled stylization results on FLUX.1-dev, while (b) shows the corresponding results on SD3.5.

(b) SD3.5

Experiments: ablation study

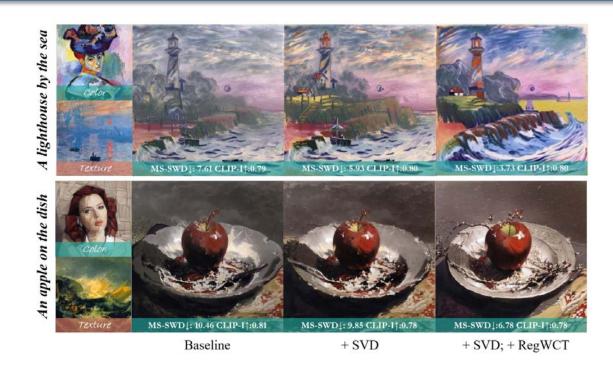


Table 2: Ablation by removing each components in our method SADis.

Method	Colo	r	Texture	Time cost (s)	
Method	MS-SWD↓	C-Hist↓	CLIP-I↑		
SADis (Ours)	7.27	0.96	0.74	≈ 10.30	
- SVD	<u>5.70</u>	1.01	0.76	≈ 10.29	
- Reg WCT	8.05	1.06	<u>0.75</u>	≈ 9.42	
- SVD $-$ RegWCT	8.93	1.10	0.76	≈ 9.41	

Experiments: ablation study on the color scale

Figure 24: Results of different scales of color embedding \mathbf{Emb}_{clr} . Here, the scale of \mathbf{Emb}_{tx} is fixed as 1.

Experiments: ablation study on scale γ and β of SVD

Table 7: Ablation studies of scaling factor γ . γ is set to 0.003 according to the ablation result

$\gamma \ (\beta = 1)$		0	0.001	0.003	0.005	0.007	0.009	0.011
Color	MS-SWD (↓)	5.70	5.71	5.57	5.36	5.22	5.21	5.20
	C-Hist (↓)	1.01	1.017	0.962	0.939	0.897	0.887	0.861
Texture	CLIP-I (†)	0.759	0.755	0.743	0.736	0.730	0.723	0.713

Table 8: Ablation studies of scaling factor β . β is set to 1 according to the ablation results.

$\beta \ (\gamma = 0.003)$		0.5	0.7	0.9	1	1.1	1.3	1.5
Color	MS -SWD (\downarrow)	5.20	5.28	5.45	5.57	5.70	5.92	6.17
	C-Hist (↓)	0.890	0.923	0.949	0.962	0.973	0.992	1.011
Texture	CLIP-I (†)	0.711	0.729	0.740	0.743	0.747	0.749	0.752

Experiments: ablation study on RegWCT

$$z_{t} = (1 - \omega) z_{t}^{'} + \omega \cdot \mathbf{RegWCT}(z_{t}^{'}).$$
 ω is the RegWCT scale.

Table 6: Ablation studies of *RegWCT* scales. considering the trade-off of texture and color alignment, the *RegWCT* scale is set as 0.5 by default.

Reg	WCT Scale	0	0.3	0.5	0.7	1.0
Color	MS-SWD (↓)	8.05	5.65	5.57	5.23	5.18
	C-Hist (↓)	1.06	0.98	0.96	0.89	0.889
Texture	CLIP-I (†)	0.747	0.744	0.743	0.741	0.740

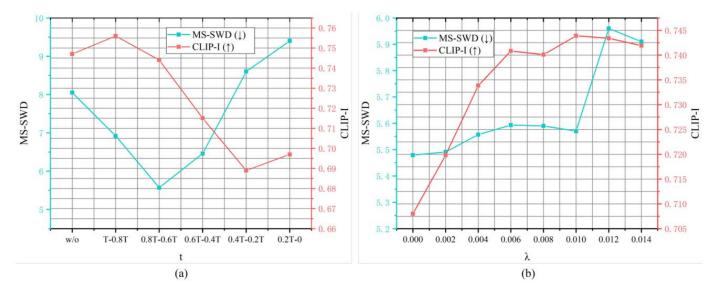


Figure 23: Ablation studies on applying RegWCT to different timestep intervals (left). Ablation studies on the scale λ of noise injection (right) during applying RegWCT. By default, λ is set to 0.01.

Thanks for your attention

Jiang Qin^{1,*}, Alexandra Gomez-Villa^{3,4,*}, Senmao Li^{2,*,‡}, Shiqi Yang^{2,†}, Yaxing Wang², Kai Wang^{5,6,3,‡}, Joost van de Weijer^{3,4}

¹Harbin Institute of Technology, China; ²VCIP, CS, Nankai University, China; ³Computer Vision Center, Spain; ⁴Universitat Autònoma de Barcelona, Spain; ⁵Program of Computer Science, City University of Hong Kong (Dongguan), China; ⁶City University of Hong Kong, HK SAR, China

https://deepffff.github.io/sadis.github.io

* Equal contribution

† The corresponding author