Kuramoto Orientation Diffusion Models

Yue Song¹, T. Anderson Keller², Sevan Brodjian¹, Takeru Miyato^{3,4}, Yisong Yue¹, Pietro Perona¹, Max Welling^{4,5}

¹Caltech

²Harvard University ⁴University of Amsterdam

³University of Tübingen ⁵CuspAl

NeurIPS 2025

Synchronization in Nature

bird flock

Phase synchronization in brains and physics: Kuramoto model [1]:
$$\frac{d\boldsymbol{\theta}_t^i}{dt} = \frac{1}{N} \sum_{i=1}^N K(t) \sin(\boldsymbol{\theta}_t^j - \boldsymbol{\theta}_t^i)$$

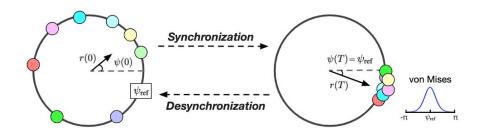
[1] Yoshiki Kuramoto. "Chemical turbulence". Springer, 1984.

Kuramoto Orientation Diffusion Models

Forward SDE:

$$rac{doldsymbol{ heta}_t^i}{dt} = rac{1}{N} \sum_{j=1}^N K(t) \sin(oldsymbol{ heta}_t^j - oldsymbol{ heta}_t^i) + K_{ ext{ref}}(t) \sin(\psi_{ ext{ref}} - oldsymbol{ heta}_t^i) + \sqrt{2D_t} oldsymbol{w}^i$$
 phase coupling reference attraction

$$\boldsymbol{\theta} = (\boldsymbol{\theta} + \pi) \bmod (2\pi) - \pi$$



Terminal distribution (von Mises):

$$p_{
m st}(heta)pprox rac{1}{Z}\exp\left(rac{K(T)r(T)+K_{
m ref}(T)}{D_T}\cos(\psi_{
m ref}- heta)
ight) \qquad \qquad r(T): ext{average magnitude}.$$

Learning the Score Function

Score-based generative models [1]:

Forward-SDE: $d\boldsymbol{x} = \boldsymbol{f}(\boldsymbol{x},t) dt + g(t) d\boldsymbol{w}$

Reverse-SDE: $dm{x} = \left[m{f}(m{x},t) - g^2(t) \middle| \nabla_{m{x}} \log p(m{x}) \middle\| dt + g(t) \, dm{ar{w}}
ight]$

For linear drifts, $p(x_t|x_0)$ will be analytical Gaussian.

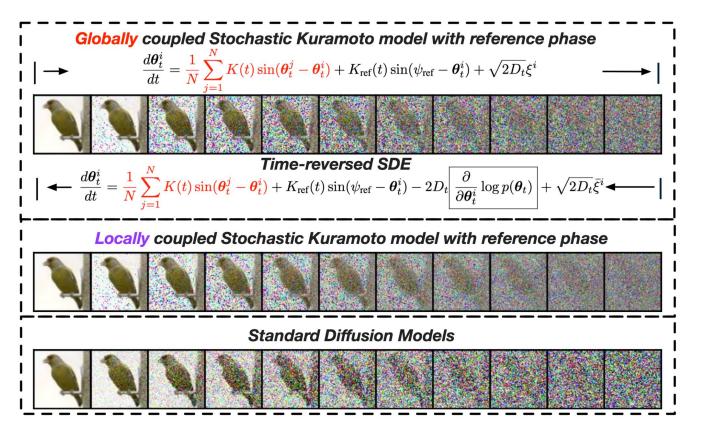
Kuramoto drift is highly non-linear; $p(x_t|x_0)$ is intractable.

Local Score Matching [2]. Approximation by MC sampling from the local transition kernel:

$$\nabla_{\boldsymbol{\theta}_t} \log p(\boldsymbol{\theta}_t) = \mathbb{E}_{\boldsymbol{\theta}_{t-1} \sim p(\boldsymbol{\theta}_{t-1}|\boldsymbol{\theta}_t)} \Big[\nabla_{\boldsymbol{\theta}_t} \log p(\boldsymbol{\theta}_t|\boldsymbol{\theta}_{t-1}) \Big]$$
$$p(\boldsymbol{\theta}_t|\boldsymbol{\theta}_{t-1}) = \mathcal{WN} \Big(\boldsymbol{\theta}_{t-1} + \boldsymbol{f}(\boldsymbol{\theta}_{t-1}, t-1), 2D_{t-1} \boldsymbol{I} \Big)$$

[1] Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." ICLR (2021). [2] Vincent, Pascal. "A connection between score matching and denoising autoencoders." Neural computation (2011).

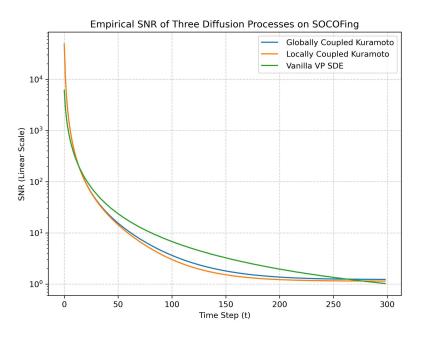
Non-isotropic Noise Dynamics



Learning to reverse Kuramoto model benefit more directional datasets!

Structured Destruction

SNR of the forward simulation



Synchronization dynamics:

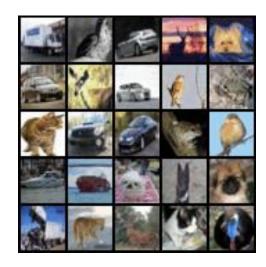
Higher initial SNR: better structure preserving.

Faster cvgc: fewer steps for generation.

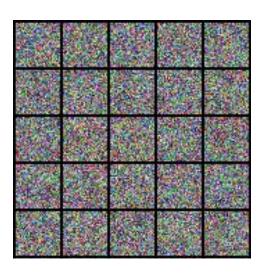
Forward and Backward Processes

FP (Diffusion Model [1])

FP (Ours)



Learned BP (Ours)

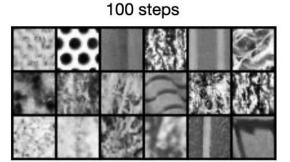


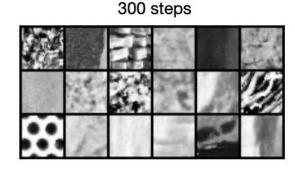
Orientation-dense Dataset

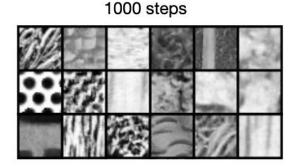
Brodatz Textures [1] (32x32)

Table 2: FID Scores (\downarrow) on Brodatz texture dataset [1, 8].

100	300	1000
38.33	22.40	20.37
20.26	18.51	15.42
18.47	15.93	14.19
	38.33	38.33 22.40 20.26 18.51







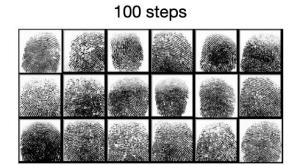
[1] Phil Brodatz. Textures: a photographic album for artists and designers. 1966.

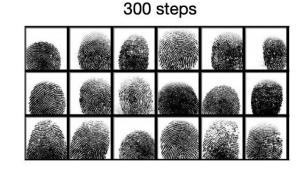
Orientation-dense Dataset

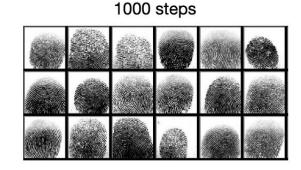
SOCOFing Fingerprints [1] (96x96)

Table 1: FID Scores (\downarrow) on SOCOFing fingerprint dataset [55].

Diffusion Steps	100	300	1000
SGM [59]	104.92		
Kuramoto Orientation Diffusion (Globally Coupled)	74.41	47.93	20.64
Kuramoto Orientation Diffusion (Locally Coupled)	67.49	43.57	18.75







[1] Yahaya Isah Shehu et al. Sokoto coventry fingerprint dataset. arXiv (2018).

Orientation-dense Dataset

Ground Terrain [1] (128x128)

Table 3: FID Scores (\downarrow) on the ground terrain dataset [67].

Diffusion Steps	100	300	1000
SGM [59]	114.90		33.79
Kuramoto Orientation Diffusion (Globally Coupled)	101.65	54.17	33.56
Kuramoto Orientation Diffusion (Locally Coupled)	92.86	49.68	30.62

[1] Jia Xue, Hang Zhang, and Kristin Dana. Deep texture manifold for ground terrain recognition. CVPR. (2018).

General Image Dataset

CIFAR10 [1] (32x32)

Table 4: FID Scores (\downarrow) on CIFAR10 [34].

Diffusion Steps	100	300	1000
SGM [59]		25.76	3.17
Kuramoto Orientation Diffusion (Globally Coupled)	29.96	25.83	11.58
Kuramoto Orientation Diffusion (Locally Coupled)	28.17	24.86	10.79

100 steps

300 steps

1000 steps

[1] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. (2009).

Earth and Climate Sciece Dataset (2D Sphere)

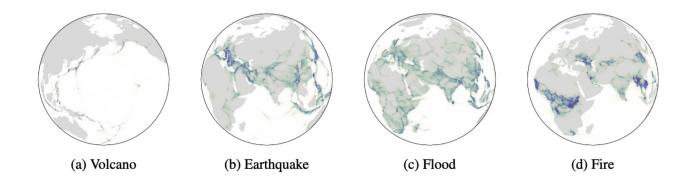
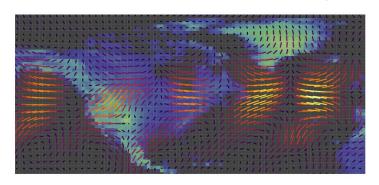


Table B: Test NLL on Earth and climate science datasets averaged across 5 runs.

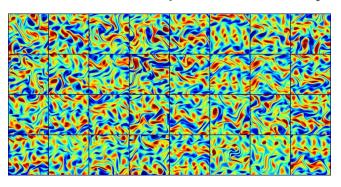
Dataset	Volcano	Earthquake	Flood	Fire
Riemannian CNF [10]	-6.05±0.61	0.14 ± 0.23	1.11±0.19	-0.80±0.54
Moser Flow [13]	-4.21 ± 0.17	-0.16 ± 0.06	0.57 ± 0.10	-1.28 ± 0.05
CNF Matching [1]	-2.38 ± 0.17	-0.38 ± 0.01	$0.25 {\pm} 0.02$	-1.40 ± 0.02
Riemannian score-based [4]	-4.92 ± 0.25	-0.19 ± 0.07	0.48 ± 0.17	-1.33 ± 0.06
Riemannian diffusion model [8]	-6.61 ± 0.96	-0.40 ± 0.05	0.43 ± 0.07	-1.38 ± 0.05
Riemannian flow matching [3]	-7.93±1.67	-0.28 ± 0.08	$0.42 {\pm} 0.05$	-1.86 ± 0.11
Our Kuramoto orientation diffusion model	-5.18±0.17	-0.18±0.06	0.49 ± 0.18	-1.44±0.05

Complex diffusion models

Shallow water Eq. of wind velocity



Navier-Stokes Eq. of fluid vorticity



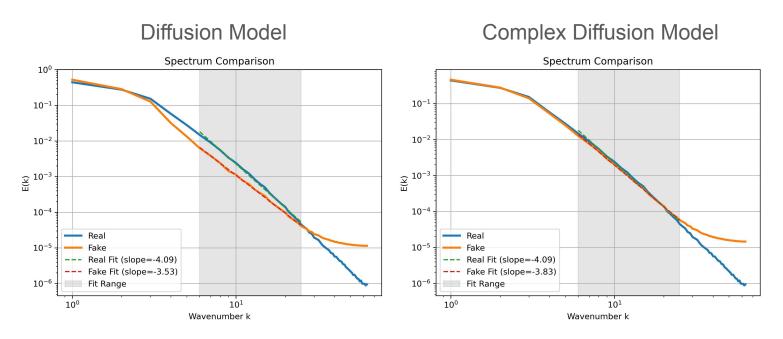
Data is always represented in Cartesian coordinates $(oldsymbol{v}_x,oldsymbol{v}_y)$.

What if we use polar form $s_t = r_t e^{i\theta_t}$?

Magnitude: Standard Diffusion Phase: Kuramoto Diffusion

Preliminary Spectral Evaluation

Navier-Stokes Fluids



Kuramoto Orientation Diffusion Models

Synchronization inductive bias:

- Non-isotropic noise dynamics;
- Structured destruction;
- Hierachical generation process.

Empirical results:

- Higher sampling efficiency;
- Large gain on orientation-dense datasets;
- Competitive results on general benchmarks;
- Potential for vector-valued generative modelling.