

Enhanced Self-Distillation Framework for Efficient Spiking Neural Network Training

Xiaochen Zhao[†], Chengting Yu[†], Kairong Yu, Lei Liu, Aili Wang^{*}

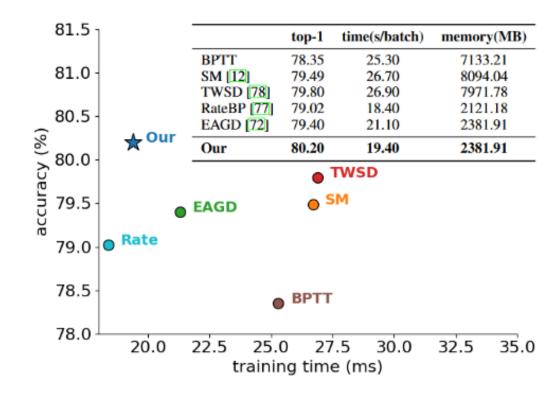
Zhejiang University Haining, Zhejiang, China

Code link: https://github.com/Intelli-Chip-Lab/enhanced-self-distillation-framework-for-snn

Motivation

- SNNs are brain-inspired models
 - Offer a potential energy efficiency advantage on neuromorphic hardware
 - An alternative to traditional ANNs

- Major limitations of SNNs:
 - Lower accuracy compared to ANNs
 - Gradient approximation error exists
 - Training cost is linear with the time dimension



Key Innovation

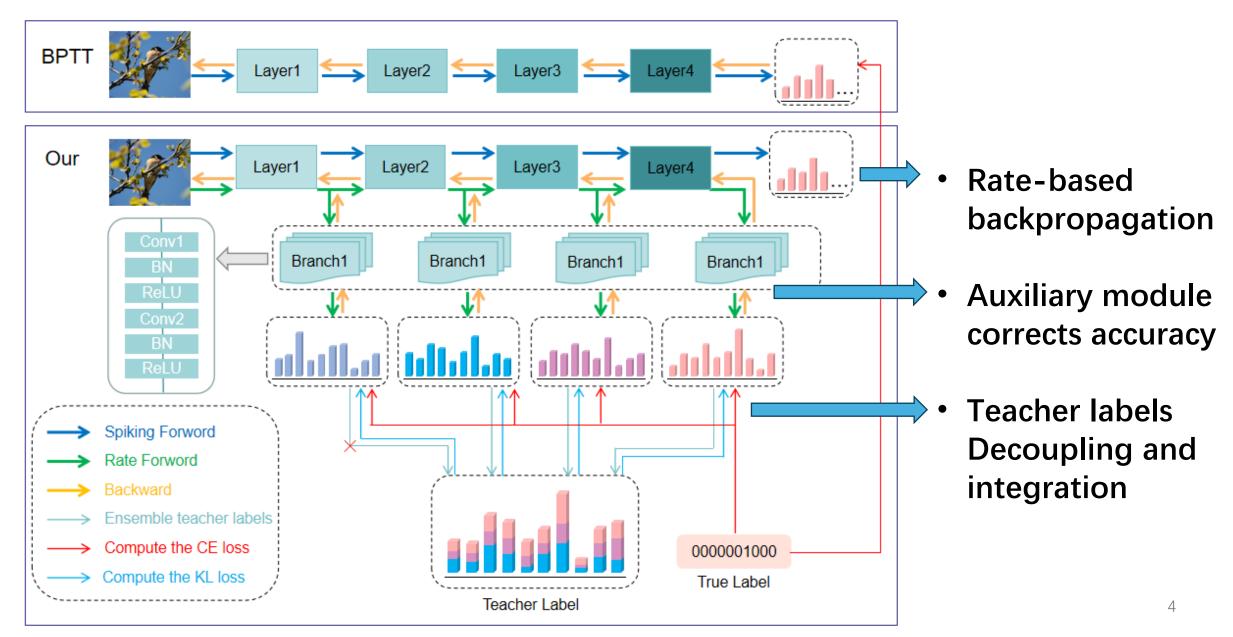
Approach:

- Auxiliary module mitigates gradient error
- Propose the concept of label reliability
- Decouple label reliability to boost distillation efficiency

Empirical Results:

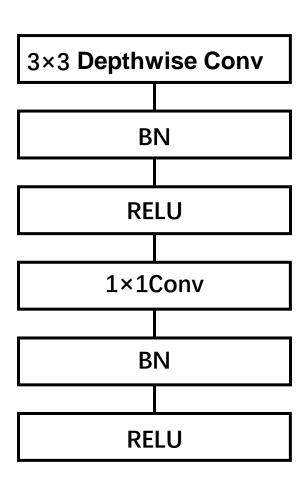
- Show outstanding performance on standard datasets.
- The self-distillation framework boasts superior scalability.

Framework Overview



Design of the auxiliary module

- Depthwise separable convolution:
 - Depthwise Convolution
 - Extract spatial local features per channel.
 - Reduce parameters/computational cost, focus on spatial dimension.
 - Pointwise Convolution
 - Fuse cross-channel features, adjust output channels.
 - Keep feature map size, optimize channel dimension only.



Alleviate the Gradient Error Problem

Baseline:

- Correct gradient: $\frac{\partial y_c}{\partial \theta} = G$,
- True gradient from RateBP approximation: $R\left(\frac{\partial y_c}{\partial \theta}\right) = G + \delta$,
- Error ratio: $K_{rate} = \frac{\delta}{G}$.

Our Work:

- We define the total loss as: $L_{total} = \alpha \cdot L_1 + L_c$,
- Our gradient : $\frac{\partial L_{total}}{\partial \theta} = \frac{\partial L_c}{\partial y_c} \cdot (G + \alpha \cdot S)$,
- Auxiliary gradient cuts error ratio: $K_{esd} = \frac{\delta}{G + \alpha \cdot S} \le \frac{\delta}{G} = K_{rate}$.

Design of Self-Distillation Loss

Filter incorrectly predicted labels

$$y_{\text{teacher}} = \frac{\sum_{l=1}^{L} p_l \cdot \mathbb{I}(\operatorname{argmax} p_l = \operatorname{argmax} y)}{\sum_{l=1}^{L} \mathbb{I}(\operatorname{argmax} p_l = \operatorname{argmax} y) + \epsilon}$$

Hard loss against the ground truth

$$L_{ce} = \sum_{l=1}^{L} \left[-\sum_{c=1}^{C} y^{(c)} \log \left(p_l^{(c)} \right) \right]$$

Total loss function

$$= \sum_{l=1}^{L} \left\{ \left[\sum_{c=1}^{C} p_{\text{teacher}}^{(c)} \log \left(\frac{p_{\text{teacher}}^{(c)}}{p_i^{(c)}} \right) \right] \cdot \mathbb{I} \left(\sum_{c=1}^{C} \left| p_{\text{teacher}}^{(c)} \right| \neq 0 \right) + \eta \cdot \mathcal{R}_l \cdot \mathbb{I} \left(\sum_{c=1}^{C} \left| p_{\text{teacher}}^{(c)} \right| = 0 \right) \right\}$$

Results--Performance Comp. on Benchmarks

Results on CIFAR-10, CIFAR-100, and ImageNet Datasets

Table 1: Comparison of top-1 accuracy (%) averaged over three runs on CIFAR-10, CIFAR-100, and ImageNet datasets. *indicates the use of an additional pre-trained ANN model for distillation. For all

experiments on ImageNet, the ResNet-34 model is consistently used for training.

Datasets	Training	Method	Architecture	Timestep	CIFAR10 Top-1 Acc (%)	CIFAR100 Top-1 Acc (%)	ImageNet Top-1 Acc (%)	
	OTTT 68	online	VGG-11	6	93.52	71.05	65.15	
	OS [85]	online	ResNet-19	4	95.20	77.86	67.54	
	Dspike [41]	ВРТТ	ResNet-19	6	94.25	74.24		
				4	93.66	73.35	68.19	
Direct-training				2	93.13	71.68		
	TET [[]]	BPTT	ResNet-19	6	94.50	74.72		
Direct-training				4	94.44	74.47	64.79	
				2	94.16	72.87		
	SEW-ResNet [17]	BPTT	ResNet-34	4	-	-	67.04	
	DSR [47]	one-step	PreAct-ResNet-18	20	95.10	78.50	67.74	
		one-step	ResNet-18	6	95.9	79.02		
				4	95.61	78.26		
	RateBP [76]			2	94.75	75.97	70.01	
				6	96.38	80.83		
				4	96.26	80.71		
				2	96.23	79.87		
	BKDSNN* [70]	BPTT	ResNet-19	4	94.64	74.95	67.21	
	TKS [15]	BPTT	ResNet-19	4	96.35	79.89	69.60	
	SM [12]	BPTT	ResNet-18	4	96.04	79.49	68.25	
			ResNet-19	4	96.82	81.70	00.25	
	TWKD* [77]	BPTT	ResNet-18	6	95.96	79.80	71.04	
				4	95.57	79.10		
w/ distillation	EAGD* [7]	one-step	ResNet-18	6	96.14	79.40		
				4	95.92	78.85	70.64	
				2	95.19	77.06		
			ResNet-19	2	96.56	81.44		
	ours	one-step	ResNet-18	6	96.19 ± 0.12	80.20 ± 0.17		
				4	95.92 ± 0.03	79.30 ± 0.21	70.72	
				2	95.29 ± 0.10	77.46 ± 0.17		
			ResNet-19	6	96.46 ± 0.11	82.14 ± 0.07		
				4	96.39 ± 0.01	81.90 ± 0.20		
				2	96.31 ± 0.07	80.97 ± 0.05		

Results on DVS-CIFAR-10

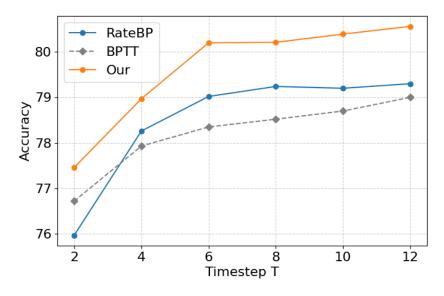
Training	Method	Architecture	Timestep	Top-1 ACC(%)		
OTTT [69]	online	VGG-11	10	76.63		
RateBP [77]	one-step	ResNet-18	10	80.40		
EAGD [72]	one-step	ResNet-19	4	80.54		
TET [11]	BPTT	VGGSNN	10	83.17		
SM [12]	BPTT	ResNet-18	10	83.19		
Enof [22]	BPTT	ResNet-19	10	80.10		
TWKD [78]	BPTT	ResNet-19	10	83.80		
		ResNet-18	10	81.40		
ours	one-step	ResNet-19	10	81.90		
ours	DDTT	ResNet-18	10	85.70		
	BPTT	ResNet-19	10	85.90		

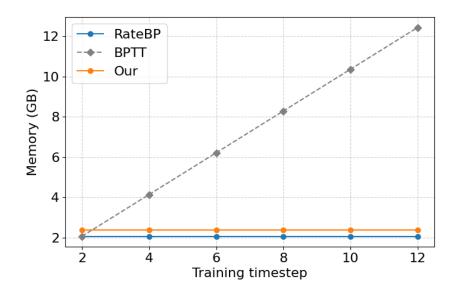
Performance:

- Excellent performance on standard datasets
- Our self-distillation framework is also applicable to BPTT

Temporal Step Scalability and Firing Rate

- Achieves constant training overhead.
- *T* increases, the accuracy continues to improve.





Lower spike firing rate.

	$\mathbf{Method} \ \big \ T = 1$	T = 2	T = 3	T=4	T = 5	T = 6	avg
Trained for 4 time steps	BPTT 0.1799 ours 0.1591	0.2137 0.1709	0.2045 0.1715	0.2091 0.1706	-	-	0.2018 0.1680
Trained for 6 time steps	BPTT 0.1761 ours 0.1548						

Conclusion

- Problem Addressed: Training Costs and Performance Issues in SNN
- **Proposed Method**: Enhanced Self-Distillation Framework for Efficient SNNs Training
 - An auxiliary module is introduced to mitigate gradient errors.
 - A reliability-decoupled self-distillation strategy is proposed.
 - Provides both theoretical analysis and empirical experiments

Experimental Results:

- A constant training cost is achieved.
- Achieves a breakthrough in accuracy compare with standard self-distillation.
- Could extend to ANNs and BPTT.

Acknowledgement & Resources

Funding Grants

- NSFC with Grant No. 62304203
- International campus of ZJU international research collaboration seed project.
- The ZJU-YST joint research center for fundamental science.

Resources

Thank you!

Contact us: {xiaochen.24, chengting.21, ailiwang}@intl.zju.edu.cn