Causality Meets Locality: Provably Generalizable and Scalable Policy Learning for Networked Systems

Hao Liang King's College London

Joint work with

Shuqing Shi

Yudi Zhang (TU/e)

Biwei Huang (UCSD)

Yali Du (KCL)

H. Liang*, S. Shi*, Y. Zhang, B. Huang, Y. Du. "Causality Meets Locality: Provably Generalizable and Scalable Policy Learning for Networked Systems." NeurIPS 2025 (Spotlight).

Motivation: Real-World Networked Systems

Key challenges

• Scalability: Exponential state-action space growth

Motivation: Real-World Networked Systems

Key challenges

- Scalability: Exponential state-action space growth
- Environment changes: traffic patterns change, user demands vary

Motivation: Real-World Networked Systems

Key challenges

- Scalability: Exponential state-action space growth
- Environment changes: traffic patterns change, user demands vary

Current methods either scale OR generalize, but rarely both

Central Research Problem

Can we design a **provably generalizable** AND **scalable** MARL algorithm for networked systems?

Our answer: Yes!

Generalizable and **S**calable **A**ctor-**C**ritic (GSAC)

Central Research Problem

Can we design a **provably generalizable** AND **scalable** MARL algorithm for networked systems?

Our answer: Yes!

Generalizable and **S**calable **A**ctor-**C**ritic (GSAC)

Key insights

- 1) **Locality + Causality** → Scalability
 - Locality: Exploit local structure
 - Causality: Identify minimal relevant features

Central Research Problem

Can we design a **provably generalizable** AND **scalable** MARL algorithm for networked systems?

Our answer: Yes!

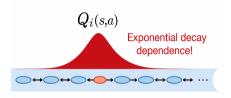
Generalizable and **S**calable **A**ctor-**C**ritic (GSAC)

Key insights

- 1) **Locality + Causality** → Scalability
 - Locality: Exploit local structure
 - Causality: Identify minimal relevant features
- 2) Meta-training \rightarrow Generalization

Challenge 1: Scalability

• Curse of dimensionality $\#(\mathbf{s},\mathbf{a}) = |\mathcal{S}_i|^n \times |\mathcal{A}_i|^n$



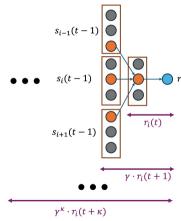
• κ -hop truncation as efficient approximation [QWL22]¹

$$\left|Q_i^{\pi}(\mathbf{s}_{\mathcal{N}_i^{\kappa}},\mathbf{a}_{\mathcal{N}_i^{\kappa}})-Q_i^{\pi}(\mathbf{s},\mathbf{a})\right|\leq\mathcal{O}(\gamma^{\kappa})$$

¹Guannan Qu, Adam Wierman, Na Li. "Scalable reinforcement learning for multiagent networked systems." *Operations Research*, 70(6): 3601–3628, 2022.

More Scalable via ACRs

Core idea: Recursively Identify minimal variables within $\mathbf{s}_{\mathcal{N}_i^{\kappa}}$ that influence κ -step rewards Output: $\mathbf{s}_{\mathcal{N}^{\kappa}}^{\circ}$



Benefits of ACR

Method	Input	Dimension	Approx. Error	Size
Full State	s	$\sum_{i=1}^n d_i^s$	0	all agents 🗶
Truncation [QWL22]	$\mathbf{S}_{\mathcal{N}_i^\kappa}$	$\sum_{j \in \mathcal{N}_i^\kappa}^{j=1} d_j^s$	$\mathcal{O}(\gamma^\kappa)$	κ -hop neighbors $lacktriangle$
GSAC (ACR)	$\mathbf{S}_{\mathcal{N}_i^\kappa}^\circ$	$\leq \sum_{j \in \mathcal{N}_i^{\kappa}} d_j^s$	$\mathcal{O}(\gamma^\kappa)$	Much Lower ✓

Challenge 2: Generalizability

Key idea: **Meta-training** [HFL⁺22]²

Training: learn domain-conditioned local policy $\pi_i^{\theta_i}(\mathbf{a}_i \mid \mathbf{s}_{\mathcal{N}_i}, \omega_{\mathcal{N}_i})$

Adaptation: few-shot estimate $\hat{\omega}'$, deploy $\pi_i^{\theta_i}(\mathbf{a}_i \mid \mathbf{s}_{\mathcal{N}_i}, \hat{\omega}'_{\mathcal{N}_i})$

All computation uses compact ACR inputs!

²Biwei Huang, Fan Feng, Chaochao Lu, Sara Magliacane, Kun Zhang, "Adarl: What, where, and how to adapt in transfer reinforcement learning". ICLR 2022.

Convergence

Theorem (Critic error bound)

With high probability, after T inner iterations:

$$\textit{Critic error} \leq \mathcal{O}\left(\underbrace{\frac{1}{\sqrt{T+t_0}}}_{\textit{TD error}} + \underbrace{\frac{2c\rho^{\kappa+1}}{(1-\gamma)^2}}_{\textit{ACR error}} + \underbrace{\sqrt{\frac{1}{T_e}}}_{\textit{Domain estimation error}}\right)$$

Theorem (Policy gradient convergence)

$$\textit{Policy optimization error} \leq \tilde{\mathcal{O}}\left(\underbrace{\frac{1}{\sqrt{K+1}}}_{\textit{optimization error}} + \rho^{\kappa+1} + \sqrt{\frac{1}{T_e}} + \underbrace{\sqrt{\frac{1}{M}}}_{\textit{domain generalization}}\right)$$

Adaptation Guarantee

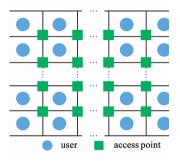
Theorem (Adaptation gap)

For new domain, after collecting T_a adaptation trajectories:

Adaptation gap
$$\geq \Theta\left(rac{1}{T_a}
ight)$$
 .

Meta-training provides good initialization/zero-shot performance!

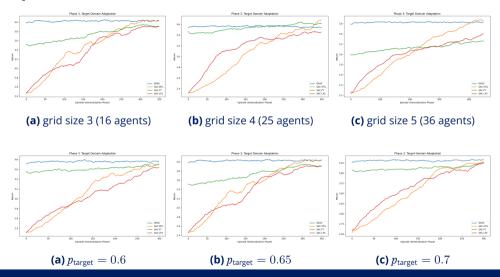
Empirical Validations



Wireless communication network [Zoc19]³

³Alessandro Zocca. "Temporal starvation in multi-channel csma networks: an analytical framework." ACM SIGMETRICS Performance Evaluation Review (2019).

Adaptation Performance



Thank you!

References I

- Biwei Huang, Fan Feng, Chaochao Lu, Sara Magliacane, and Kun Zhang, Adarl: What, where, and how to adapt in transfer reinforcement learning, International Conference on Learning Representations, 2022.
- Guannan Qu, Adam Wierman, and Na Li, *Scalable reinforcement learning for multiagent networked systems*, Operations Research **70** (2022), no. 6, 3601–3628.
- Alessandro Zocca, *Temporal starvation in multi-channel csma networks: an analytical framework*, ACM SIGMETRICS Performance Evaluation Review **46** (2019), no. 3, 52–53.