Class conditional conformal prediction for multiple inputs by p-value aggregation

Jean-Baptiste Fermanian 1 , Mohamed Hebiri 2 , Joseph Salmon 1

 1 IMAG, IROKO, Université de Montpellier, Inria, CNRS, France 2 LAMA, Université Gustave Eiffel, France

1. Setting: multi-class classification

Inputs:

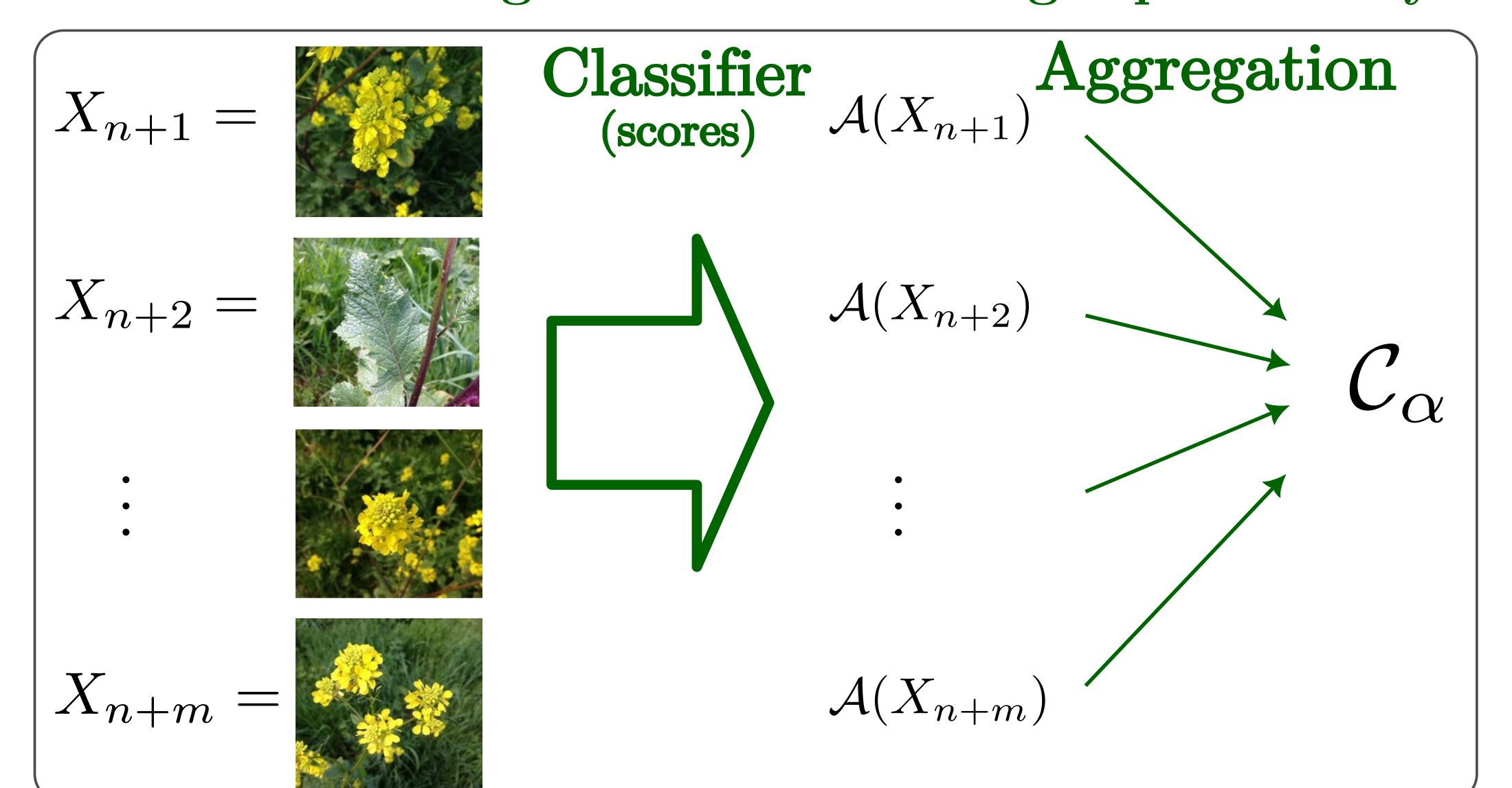
- $\alpha \in [0, 1]$ a fixed coverage error.
- $(X_i, Y_i)_{i=1}^n$ a calibration set, $n_y = |\{i : Y_i = y\}|$.
- $(X_{n+j})_{j=1}^m$ multiple inputs of the same unknown class Y_{n+1} .
- $s: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ a score function e.g. (one minus) the softmax output.

Conformal scores:

 $\blacktriangleright S_i = s(X_i, Y_i), S_i^y$ are scores of class $y, S_{n+i}(y) = s(X_{n+i}, y).$

Motivation: PlantNet receives multiple images of the same plant.

→ Output a set containing the class with 'high' probability.



Targeted guarantee: class conditional validity

$$\mathbb{P}\Big[Y_{n+1} \in \mathcal{C}_{\alpha} | Y_{n+1} = y\Big] \ge 1 - \alpha, \quad \forall y \in \mathcal{Y}.$$

 \hookrightarrow to avoid coverage disparities between classes

2. Background: conformal prediction

Marginal conformal prediction.

The set $C_{\alpha}^{mrg}(x) = \{y : s(x,y) \leq S_{\lceil (1-\alpha)(n+1) \rceil} \}$ is marginally valid:

$$\mathbb{P}\left[Y_{n+1} \in \mathcal{C}_{\alpha}^{mrg}(X_{n+1})\right] \geq 1 - \alpha.$$

Class conditional conformal prediction.

The set $C_{\alpha}^{cd}(x) = \{y : s(x,y) \leq S_{\lceil (1-\alpha)(n_y+1) \rceil}^y\}$ is **conditionally valid**.

P-value equivalence.

$$y \in \mathcal{C}^{cd}_{\alpha}(x) \Longleftrightarrow p(y) = \frac{1}{n_y + 1} \sum_{i=1}^{n_y} \mathbf{1}\{s(x, y) \le S_i^y\} \ge \alpha.$$

3. Baseline: majority voting

• Majority set contains all classes present in more than half of the sets:

$$C_{\alpha,m}^{MAJ} = \left\{ y : \sum_{j=1}^{m} \mathbf{1} \left\{ y \in C_{\alpha/2}^{cd}(X_{n+j}) \right\} \ge m/2 \right\}.$$

• Exchangeable majority set intersects the sequential majority voting sets:

$$\mathcal{C}^{Exch.\ MAJ}_{\alpha} = \bigcap_{k=1}^{MAJ} \mathcal{C}^{MAJ}_{\alpha,k}$$

• Using Gasparin and Ramdas (2024), these sets are conditionally valid.

4. Key results

Exchangeability assumption

For all $y \in \mathcal{Y}$ and conditionally to $Y_{n+1} = y$, the vector of scores $\left(S_1^y,\ldots,S_{n_y}^y,S_{n+1}(y),\ldots,S_{n+m}(y)\right)$ is exchangeable.

Distribution of randomized conformal p-values

Theorem. For $y \in \mathcal{Y}$ and $j \in [m]$, let

$$p_j^{\mathrm{rd}}(y) = \frac{1}{n_y} \sum_{i=1}^{n_y} \left[\mathbf{1}\{S_{n+j}(y) < S_i^y\} + \mathbf{1}\{S_{n+j}(y) = S_i^y\} \mathbf{1}\{U_j \le U_i^y\} \right],$$

where $(U_j)_{j=1}^m$ and $(U_i^y)_{i=1}^{n_y}$ for $y \in \mathcal{Y}$ are i.i.d. uniform on [0, 1]. Then

$$\mathbf{p}^{\text{rd}}_{\uparrow}(Y_{n+1}) = \left(p^{\text{rd}}_{(1)}(Y_{n+1}), \dots, p^{\text{rd}}_{(m)}(Y_{n+1})\right) \mid (Y_{n+1} = y) \sim \mathcal{U}(A_{n_y,m}),$$
where $A_{n,m} = \left\{a \in \left\{\frac{i}{n} : 0 \le i \le n\right\}^m : a_1 \le \dots \le a_m\right\}.$

• Generalize results of Gazin et al. (2023) to the case of ties.

Distribution of conditional empirical coverage

Corollary. For $y \in \mathcal{Y}$ and $\ell \in [m]$

$$\mathbb{P}\left[\sum_{i=1}^{m} \mathbf{1}\left\{y \in \mathcal{C}_{\alpha}^{cd}(X_{n+j})\right\} = \ell \mid Y_{n+1} = y\right] \geq \mathbb{P}[\beta = \ell],$$

where β follows the distribution $BetaBin(m, (n_y + 1) - k_y, k_y)$ with $k_y = \lfloor (n_y + 1)\alpha \rfloor$.

• It is an equality in case of no ties.

5. Aggregation of conformal sets

Refinement of majority voting.

Let $q_{\alpha}^{BB}(y)$ the α -quantile of the distribution BetaBin $(m, n_y + 1 - k_y, k_y)$. Then,

$$\mathcal{C}_{\alpha}^{Beta-Binomial} = \left\{ y : \sum_{j=1}^{m} \mathbf{1} \left\{ y \in \mathcal{C}_{\alpha}^{cd}(X_{n+j}) \right\} \ge q_{\alpha}^{BB}(y) \right\},$$

is conditionally valid.

• BetaBinomial's quantiles can be approximated by Binomial's ones when $|\mathcal{Y}|m \ll n$.

P-value aggregation method

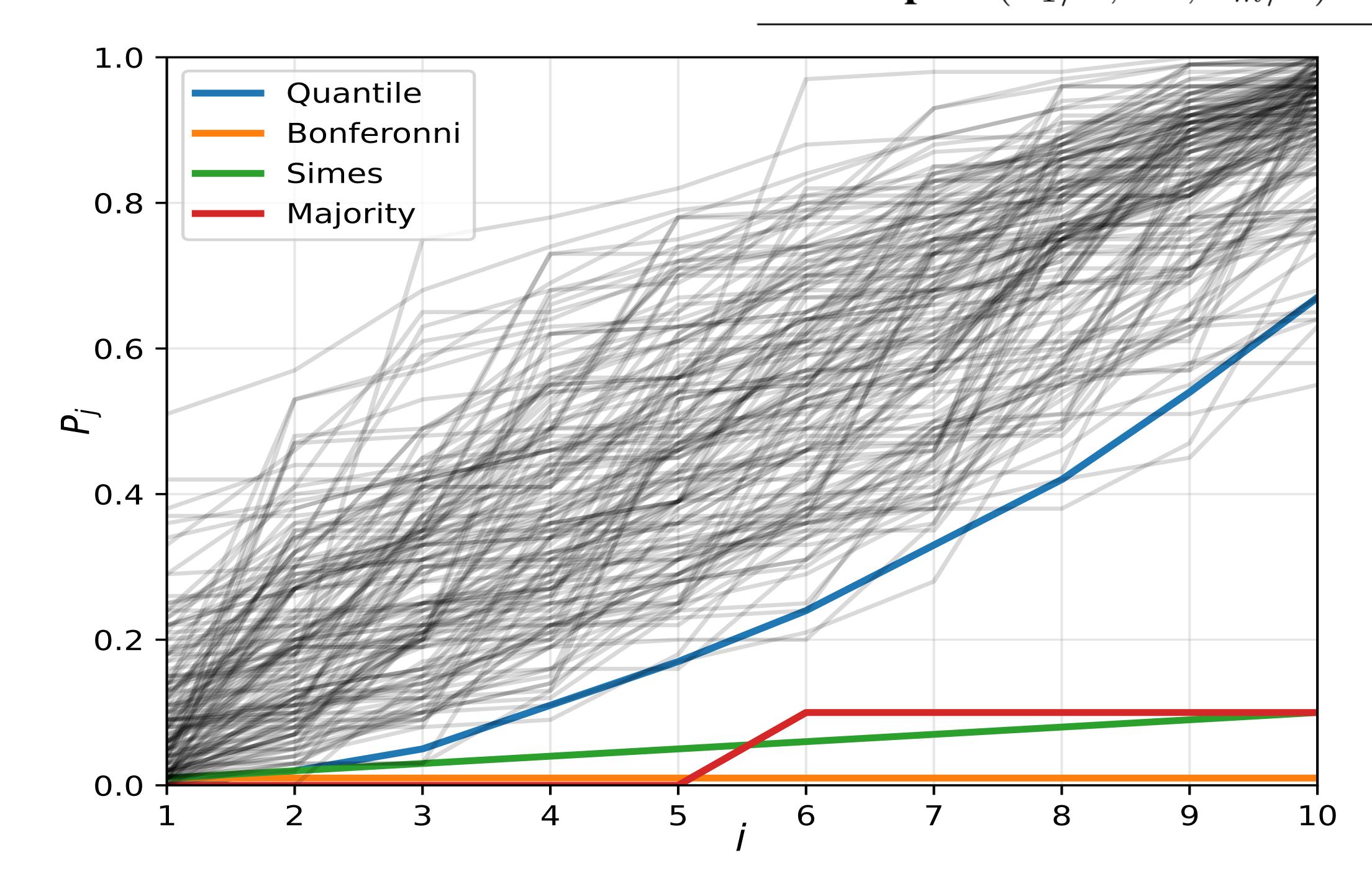
Let $v:[0,1]^m \times \mathcal{Y} \to \mathbb{R}$ and $T \in \mathbb{N}$, let $P_t^y \stackrel{i.i.d.}{\sim} \mathcal{U}(A_{n_y,m})$ and $V_t^y = v(P_t^y,y)$ for $t \in T$ and $y \in \mathcal{Y}$. Then, the set

 $\mathcal{C}^{v}_{\alpha} = \left\{ y : v(\mathbf{p}^{rd}_{\uparrow}(y), y) \ge V^{y}_{(|(T+1)\alpha|)} \right\},\,$

- is conditionally valid.
- Encompass Bonferonni correction : $v = \min p_i$; or Simes : $v = \min p_i/j$.

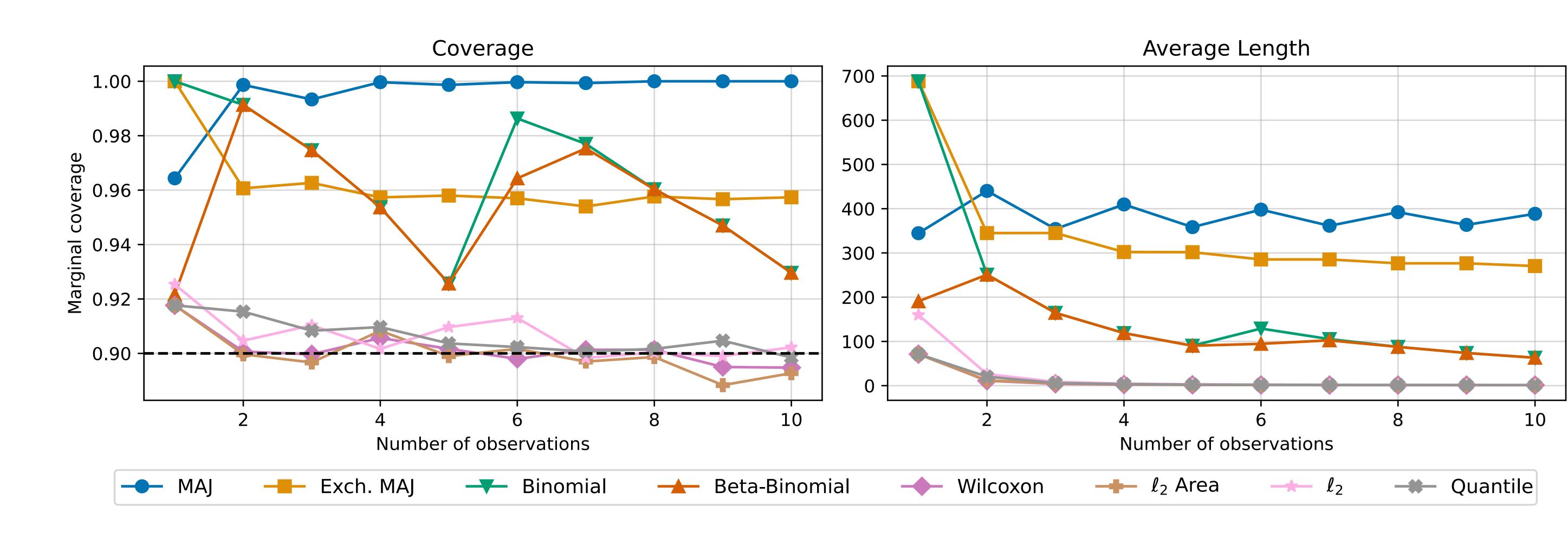
6. P-value simulation

- Simulation of 150 samples of $P \sim \mathcal{U}(A_{n,m}) \text{ for } m = 10 \text{ and } n = 100.$
- Comparison of the score Quantile with classical aggregation method for $\alpha = 0.1$.
- **Algorithm 1** Simulation of $P \sim \mathcal{U}(A_{n,m})$
- 1: Input: n, m.
- 2: Draw R_1, \ldots, R_m w./o. replacement from [n+m].
 - 3: $P_i \leftarrow R_{(i)} \text{ for } 1 \le i \le m$.
 - 4: $P_i \leftarrow P_i i \text{ for } 1 \leq i \leq m$.
 - 5: Output: $(P_1/n, ..., P_m/n)$.



7. Experiments on LifeCLEF 2015 dataset

- 688 classes, $n = 3.10^4$, classifier is a ResNet50 with top1 accuracy of 43%.
- Multi-inputs are drawn randomly from plants of the same class.
- Used scores: \triangleright ℓ_2 Area: $v = \|\mathbf{p}\|_2$,
 - ightharpoonup Wilcoxon: $v = \|\mathbf{p}\|_1$,
 - $\ell_2 : v = -\|\mathbf{p} \mathbf{Id}\|_2,$
 - ▶ Quantile: $v = \min_j F_i^y(p_j)$, where F_i^y is the cdf of P_i^y .



• Majority voting \ll (Beta)-Binomial approaches \ll P-value aggregation methods.

8. Strengths and weaknesses

- Leverage exact distribution of the ordered randomized conformal p-values.
- Manage ties between scores by an adaptive randomization.
- Exchangeability assumption: non-robust to correlation between multi-inputs.