Smooth Quadratic Prediction Markets

By Enrique Nueve and Bo Waggoner @ CU Boulder Computer Science Department

Prediction Markets

Core Question: can we design a prediction market which guarantees a better worst-case loss than the common baseline while preserving axiomatic guarantees?

Answer: yes, we propose a new prediction market which preserves most axioms while having a better worst-case loss.

Automated Market Makers

An automated market maker for AD securities, with initial state $q_0 \in \mathbb{R}^d$, operates as follows.

- 1. A trader can request any bundle of securities $r_t \in \mathbb{R}^d$.
- 2. The trader pays the market maker some amount $Pay(q_t, r_t) \in \mathbb{R}$ in cash.
- 3. The market state updates to $q_{t+1} = q_t + r_t$.

After an outcome of the form $Y=y_i$ occurs, for each round t, the trader responsible for the trade r_t is paid $(r_t)_i$ in cash, i.e. the number of shares purchased in outcome y_i . The market payout for the bundle r_t and the outcome Y=y is expressed via $\langle r_t, \rho(y) \rangle$ where $\rho: \mathscr{Y} \to \delta_y$.

Price-Plus Fee Market Construction

A Price-Plus-Fee Market is an automated market maker of the following form. Let $C: \mathbb{R}^d \to \mathbb{R}$ be **CIIP** (convex, increasing, one-invariant, probability mapping). Then

$$Pay(q_t, r_t) = \langle \nabla C(q_t), r_t \rangle + Fee(q_t, r_t)$$

We note that in this case, $InstPrice(q_t) = \nabla C(q_t)$.

Desired Market Axioms

A1 (Existence of Instantaneous Price): C is continuous and differentiable everywhere on \mathbb{R}^d .

A2 (Information Incorporation): for any $q, r \in \mathbb{R}^d$, Pay $(q + r, r) \ge \text{Pay}(q, r)$.

A3 (No Arbitrage): For all $q, r \in \mathbb{R}^d$, $\exists y \in \mathcal{Y}$ such that $\text{Pay}(q, r) \geq \langle r, \rho(y) \rangle$.

A4 (Expressiveness): For any $p \in \Delta_d$ and $\epsilon > 0$, $\exists \ q \in \mathbb{R}^d$ such that $\| \operatorname{InstPrice}(q) - p \| < \epsilon$.

A5 (Incentive Compatibility): Assume that the market is at state q_t and that the agent has a belief $\mu \in \Delta_d$. To maximize expected return

$$\underset{r_t \in \mathbb{R}^d}{\operatorname{arg}} \underbrace{\langle \mu, r_t \rangle} - \underbrace{\operatorname{Pay}(q_t, r_t)}_{\operatorname{Payment to Market}}$$

the agent will purchase a bundle r_t such that for $q_{t+1} = q_t + r_t$ it holds that $\operatorname{InstPrice}(q_{t+1}) = \mu$.

Duality-Based CFMM

In the literature, the Duality-based CFMM has been the most common framework for a prediction market for over the last decade and serves as our baseline.

$$\mathsf{Pay}_D(q_t, r_t) = \langle \nabla C(q_t), r_t \rangle + D_C(q_{t+1}, q_t)$$

- DCFMM satisfies Axioms 1-5
- The DCFMM has a worst cost loss no more than $\sup_{p\in\rho(\mathscr{Y})}C^*(p)-\min_{p\in\Delta_d}C^*(p)$

Smooth Quadratic Prediction Markets

Assume that C is L-smooth w.r.t. $\|\cdot\|$, $\operatorname{Pay}_L(q_t, r_t) = \langle \nabla C(q_t), r_t \rangle + \frac{L}{2} \|r_t\|^2$

Theorem 1

- •The Smooth Quadratic Prediction Market satisfies Axioms 1-4.
- •The Smooth Quadratic Prediction Market has a better worst-case loss than the DCFMM.

Smooth Quadratic Prediction Markets

A6 (Incremental Incentive Compatibility): Assume the market is at state q_t and that a sequence of agents with the same belief $\mu \in \Delta_d$ purchases bundles r_t relative to maximizing their expected payout

$$\underset{r_t \in \mathbb{R}^d}{\text{arg max}} \quad \underbrace{\langle \mu, r_t \rangle} \quad - \quad \underbrace{\text{Pay}(q_t, r_t)}.$$
 Expected Payout Payment to Market

Then
$$\lim_{t\to\infty} \nabla C(q_t) = \mu$$
.

Theorem 2

- The Smooth Quadratic Prediction Market satisfies Axiom 6.
- The proof is facilitated by showing the agents behavior reduces to *non-Euclidean steepest descent*.