GoRA: Gradient-driven Adaptive Low Rank Adaptation

Haonan He^{1,2,3} Peng Ye^{3,4,5} Yuchen Ren^{3,6} Yuan Yuan² Luyang Zhou⁷ Shucun Ju⁷ Lei Chen²

¹University of Science and Technology of China

²Institute of Intelligent Machines, HFIPS, CAS

³Shanghai Artificial Intelligence Laboratory

⁴Fudan University

⁵The Chinese University of Hong Kong

⁶University of Sydney

⁷Anhui Disaster Warning & Agrometeorological Information Center

NeurIPS 2025 (Submission)

Introduction & Motivation

The Problem: Full Fine-Tuning is Expensive

- Full Fine-Tuning (FFT) of Large Language Models (LLMs) is memory-intensive.
- \bullet An Adam optimizer requires \approx 16 ϕ bytes of memory for ϕ parameters.

Existing Solution: LoRA

- Low-Rank Adaptation (LoRA) freezes pre-trained weights W_0 and trains low-rank adapters $\Delta W = sAB$.
- This significantly reduces the memory for optimizer states.
- The Gap: LoRA's performance on complex tasks (e.g., math, code) still lags behind FFT.

Two Key Challenges of LoRA

1. Rank Selection

- Challenge: Higher rank \rightarrow better performance, but also \rightarrow more memory and overhead.
- Existing Fix: Methods like AdaLoRA dynamically mask ranks.
- Flaw: These methods require larger matrices (e.g., 1.5x parameters) to reserve space, limiting the max rank and increasing overhead.

2. Initialization

- Vanilla LoRA: Initializes B=0 to ensure $\Delta W=0$ at step 0.
- Non-Zero Init (PiSSA, LoRA-GA, etc.): $A_0B_0 \neq 0$.
- CRITICAL FLAW: All existing non-zero methods must manipulate the pre-trained weights ($W_0' = W_0 A_0 B_0$).
- This creates a **training-inference gap** and sacrifices LoRA's key benefits: minimal storage and easy multi-adapter serving.

Our Solution: GoRA

Core Idea: View LoRA as a Gradient Compressor

Inspired by LoRA-FA, we hypothesize that LoRA adapters act as compressors for the gradients $\frac{\partial \mathcal{L}}{\partial W_0}$.

GoRA: Gradient-driven Adaptive Low Rank Adaptation

GoRA is a unified framework that uses gradients to **simultaneously** adapt both rank and initialization.

- Pre-computation: Briefly compute N-batch accumulated gradients G before training.
- **2** Adaptive Rank Allocation: Use G and W_0 to assess layer importance and allocate a specific rank r^i to each layer.
- **Adaptive Initialization:** Use G to initialize B₀, "priming" the model for optimization.

Our Solution: GoRA

Core Idea: View LoRA as a Gradient Compressor

Inspired by LoRA-FA, we hypothesize that LoRA adapters act as compressors for the gradients $\frac{\partial \mathcal{L}}{\partial W_0}$.

GoRA: Gradient-driven Adaptive Low Rank Adaptation

GoRA is a unified framework that uses gradients to **simultaneously** adapt both rank and initialization.

- Pre-computation: Briefly compute N-batch accumulated gradients G before training.
- **2** Adaptive Rank Allocation: Use G and W_0 to assess layer importance and allocate a specific rank r^i to each layer.
- **3** Adaptive Initialization: Use G to initialize B₀, "priming" the model for optimization.

Key Advantage: GoRA achieves a data-driven, non-zero initialization without manipulating the pre-trained weights W_0 .

GoRA Method: 1. Adaptive Rank Allocation

Step 1: Compute Importance

We use the pre-computed gradient G to find importance scores for weights:

$$I(W) = avg(|W \odot G|)$$

Normalize scores to get an "advantage" a^i for i-th weight:

$$a^i = \frac{I(\mathsf{W}_0^i)}{\sum_{i=1}^N I(\mathsf{W}_0^i)}$$

Step 2: Allocate Rank

Distribute a total parameter budget b (based on a reference rank r^{ref}):

$$r^{i} = \text{clip}([\frac{b \cdot a^{i}}{\sqrt{m+n}}], r^{\min}, r^{\max})$$

GoRA Method: 2. Adaptive Initialization

Goal: Approximate the Gradient

We want our initial adapter state A_0B_0 to be the best low-rank approximation of the gradient G.

Step 1: Initialize A

Initialize A₀ using a standard method (e.g., Kaiming Uniform).

Step 2: Initialize B (The Key)

We solve for B_0 using the Moore-Penrose pseudo-inverse:

$$\mathsf{B}_0 = - (\mathsf{A}_0^{\top} \mathsf{A}_0)^{-1} \mathsf{A}_0^{\top} \mathsf{G}$$

We apply a scaling factor γ to control the magnitude:

$$W_0 + \frac{\alpha}{\sqrt{r}} A_0(\xi B_0) \approx W_0 - \gamma G$$

Experimental Setup

Tasks and Models

- NLU: T5-Base on 5 GLUE tasks.
- NLG: Llama-3.1-8B & Llama-2-7B on MTBench (Chat), GSM8k (Math), and HumanEval (Code).
- CV: CLIP-ViT-B/16 on 7 image classification tasks.

Baselines

We compare against a comprehensive set of baselines:

- Full Fine-Tuning (FFT)
- Vanilla LoRA
- Convergence-Optimized: rsLoRA, DoRA, LoRA+
- Init-Optimized: PiSSA, OLoRA, LoRA-GA
- Adaptive: AdaLoRA

Results: NLG (Llama-3.1-8B)

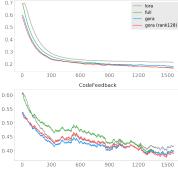
Method	MTBench	GSM8k	HumanEval
Full	5.88	73.69	51.63
LoRA	6.15	67.78	43.09
rsLoRA	6.18	68.36	<u>45.78</u>
DoRA	6.24	69.17	43.70
LoRA+	6.35	71.29	44.51
PiSSA	6.08	68.56	44.10
LoRA-GA	5.99	71.39	43.29
AdaLoRA	6.19	70.63	41.46
GoRA (r^{ref} =8)	<u>6.34</u>	72.91	48.98
GoRA (r^{ref} =32)	6.21	75.59	51.22
GoRA ($r^{\text{ref}}=128$)	5.82	75.74	52.03

Key Takeaways:

• At $r^{ref} = 8$, GoRA beats all baselines on GSM8k and HumanEval.

 At r^{ref} = 128, GoRA surpasses Full
Fine-Tuning on complex math and code tasks.

MetaMathOA



GoRA shows lower start loss and faster convergence.

Results: NLU (T5-Base) & CV (CLIP)

T5-Base on GLUE (Average Score)

GoRA: 87.96

Full Fine-Tuning: 87.91

LoRA-GA (2nd best): 87.77

• LoRA: 82.08

9/11

Results: NLU (T5-Base) & CV (CLIP)

T5-Base on GLUE (Average Score)

- GoRA: 87.96
- Full Fine-Tuning: 87.91
- LoRA-GA (2nd best): 87.77
- LoRA: 82.08

GoRA outperforms all baselines and even FFT on average.

CLIP-ViT-B/16 on 7 Tasks (Average Score)

- GoRA: 89.47
- LoRA-Pro (2nd best): 89.20
- LoRA-GA: 88.51
- Full Fine-Tuning: 88.06

Results: NLU (T5-Base) & CV (CLIP)

T5-Base on GLUE (Average Score)

- GoRA: 87.96
- Full Fine-Tuning: 87.91
- LoRA-GA (2nd best): 87.77
- LoRA: 82.08

GoRA outperforms all baselines and even FFT on average.

CLIP-ViT-B/16 on 7 Tasks (Average Score)

- GoRA: 89.47
- LoRA-Pro (2nd best): 89.20
- LoRA-GA: 88.51
- Full Fine-Tuning: 88.06

GoRA again outperforms FFT and all baselines, showing cross-modality effectiveness.

Ablation Studies

Rank Allocation Strategy

A wide adaptive range (e.g., r = 4-32) beats a fixed rank (r = 8).

This confirms the adaptive strategy is effective.

Initialization Strategy

The scaling factor γ is crucial. $\gamma=0$ (no init) performs worst.

This confirms the gradient-based initialization provides a strong "kick-start".

GoRA allocates rank heterogeneously. Most ranks go to wv layers, fewest to wq.

Importance Metric

Our metric avg($|W \odot G|$) clearly outperforms others (e.g., $||G||_*$).

Conclusion & Key Contributions

Key Contributions

- We identify critical limitations in existing LoRA variants:
 - Adaptive rank methods add overhead.
 - Non-zero initializations create a training-inference gap.
- 2 We propose GoRA, a unified framework that uses gradients to:
 - Adaptively Allocate Rank based on weight importance.
 - Adaptively Initialize Adapters via pseudo-inverse, without manipulating W_0 .
- GoRA consistently outperforms strong baselines and even Full **Fine-Tuning** on complex tasks, while preserving the efficiency of LoRA.

Additional Findings

- QGoRA: GoRA is compatible with quantization and outperforms QLoRA.
- Usability: GoRA's overhead is negligible, and it includes auto-tuning