

FedRW:

Efficient Privacy-Preserving Data Reweighting for Enhancing Federated Learning of Language Models

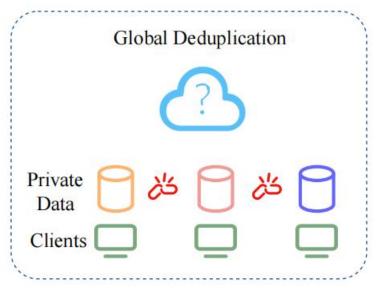
Pukang Ye

East China Normal University

Overview

- Key problem: Data deduplication in federated LLM training.
 - Data duplication → memorization, model performance, attacks1...
 - Global deduplication across multiple clients cannot be directly resolved

due to privacy constraints.



Overview of SOTA work

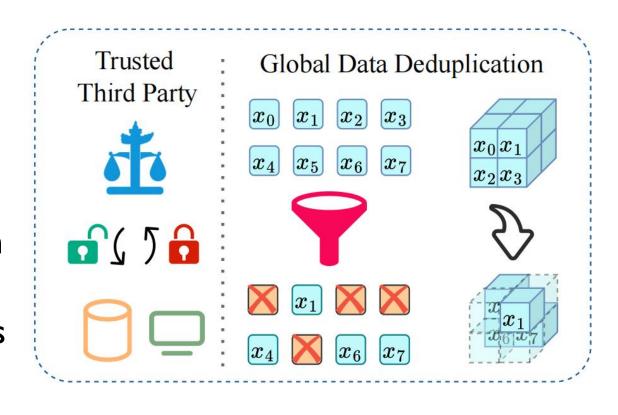
• EP-MPD^[1]

Pros

data privacy

Cons

- hard deduplication
- computational/communication overheads
- reliance on trusted 3rd parties

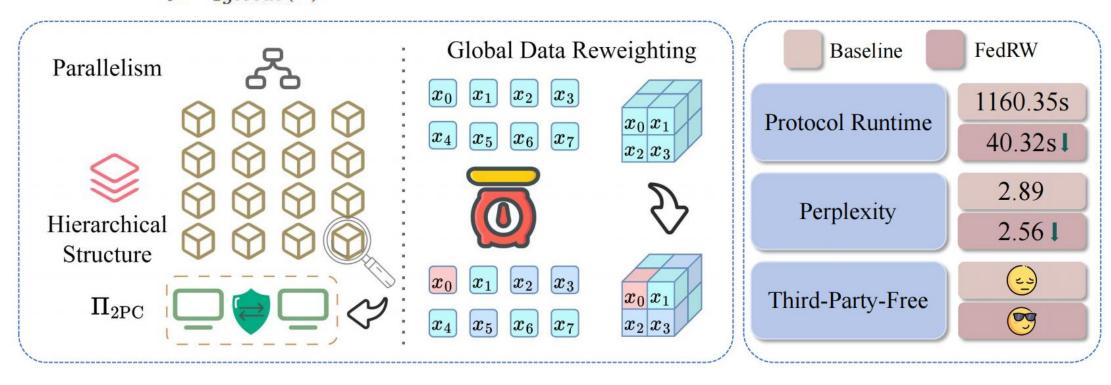


[1] A. Abadi, et al. "Privacy-preserving data deduplication for enhancing federated learning of language models." NDSS'25

Our solution - FedRW

Soft deduplication - global data reweighting

$$w(x) \propto \frac{1}{freq_{global}(x)}$$
. \rightarrow MPC Problem



Our solution - FedRW

• "N choose 2" formula → Parallelism

$$O(n^2) \to O(2^{\lceil log_2 n \rceil} - 1)$$

Level 3	$\Pi_{\mathrm{2PC}}(P_1, P_5)$	$\Pi_{\mathrm{2PC}}(P_2,P_6)$	$\Pi_{\mathrm{2PC}}(P_3,P_7)$	$\Pi_{\mathrm{2PC}}(P_4,P_8)$
	$\Pi_{\mathrm{2PC}}(P_1,P_6)$	$\Pi_{\mathrm{2PC}}(P_2,P_7)$	$\Pi_{\mathrm{2PC}}(P_3,P_8)$	$\Pi_{\mathrm{2PC}}(P_4,P_5)$
	$\Pi_{\mathrm{2PC}}(P_1,P_7)$	$\Pi_{\mathrm{2PC}}(P_2,P_8)$	$\Pi_{\mathrm{2PC}}(P_3,P_5)$	$\Pi_{\mathrm{2PC}}(P_4,P_6)$
	$\Pi_{\mathrm{2PC}}(P_1,P_8)$	$\Pi_{\mathrm{2PC}}(P_2,P_5)$	$\Pi_{\mathrm{2PC}}(P_3,P_6)$	$\Pi_{\mathrm{2PC}}(P_4,P_7)$
	,			
Level 2	$\Pi_{\mathrm{2PC}}(P_1,P_3)$	$\Pi_{\mathrm{2PC}}(P_2,P_4)$	$\Pi_{\mathrm{2PC}}(P_5,P_7)$	$\Pi_{\mathrm{2PC}}(P_6,P_8)$
	$\Pi_{\mathrm{2PC}}(P_1,P_4)$	$\Pi_{\mathrm{2PC}}(P_2,P_3)$	$\Pi_{\mathrm{2PC}}(P_5,P_8)$	$\Pi_{\mathrm{2PC}}(P_6,P_7)$
	,			
Level 1	$\Pi_{\mathrm{2PC}}(P_1,P_2)$	$\Pi_{\mathrm{2PC}}(P_3,P_4)$	$\Pi_{\mathrm{2PC}}(P_5,P_6)$	$\Pi_{\mathrm{2PC}}(P_7,P_8)$

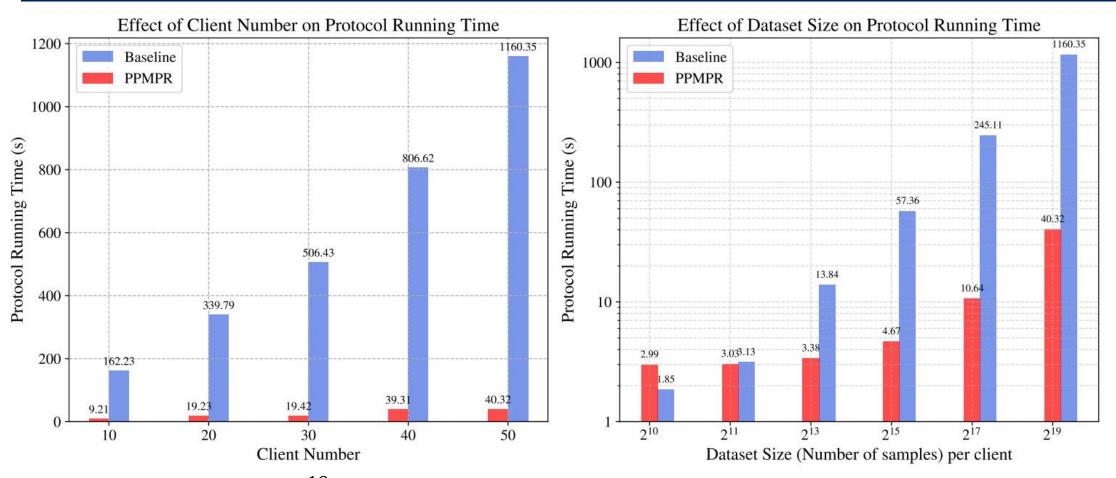
$$\begin{split} \vec{a} &:= (1,2,3,4), \quad \vec{b} := (5,6,7,8) \\ \vec{b'} &\leftarrow \text{RotL}(\vec{b},0), \quad row_1 \leftarrow \{(\vec{a_i},\vec{b'_i})|i=1,2,3,4\} \\ \vec{b'} &\leftarrow \text{RotL}(\vec{b},1), \quad row_2 \leftarrow \{(\vec{a_i},\vec{b'_i})|i=1,2,3,4\} \\ \vec{b'} &\leftarrow \text{RotL}(\vec{b},2), \quad row_3 \leftarrow \{(\vec{a_i},\vec{b'_i})|i=1,2,3,4\} \\ \vec{b'} &\leftarrow \text{RotL}(\vec{b},3), \quad row_4 \leftarrow \{(\vec{a_i},\vec{b'_i})|i=1,2,3,4\} \end{split}$$

Enhanced Training

Frequency-based loss reweighting

$$\vec{\mathcal{W}} = \frac{1}{\ln(\vec{\mathcal{C}} + \vec{1}) + \vec{\varepsilon}} \quad \mathcal{L}_{batch} = \frac{\sum_{i=1}^{B} \vec{\mathcal{W}}_i \cdot \ell_i^{(t)}}{\sum_{i=1}^{B} \vec{\mathcal{W}}_i}$$

Evaluation: Preprocessing (28.78×)



- For clients (10-50) with 2^{19} data per client and 30% duplication, PPMPR exhibits 17.61-28.78 \times speedup.
- For 50 clients, PPMPR outperforms the baseline by 4.09-28.78 imes with increasing dataset size.

Evaluation: Model Performance (+11.42%)

Table 5: Model perplexity (↓) on test set under various duplication settings with GPT-2 Large

Method	Dataset											
Duplication	1 5	Haiku		Rotte	en Tom	atoes	Sł	ort Jok	es	S	Sonnets	
Percentage	30%	20%	10%	30%	20%	10%	30%	20%	10%	30%	20%	10%
Raw Data	3.26	3.25	2.98	2.65	2.61	2.53	4.11	4.03	3.94	4.39	4.34	4.31
Baseline	2.89	-	-	2.21	-	-	3.79	-	-	4.35	-	-
FedRW (Ours)	2.56	2.67	2.69	1.61	1.63	1.64	3.15	3.17	3.17	4.07	4.26	4.26

Table 6: Model perplexity (\$\psi\$) on test set under 30% duplication percentage with DistilGPT2

Method	Dataset										
	Haiku	Short Jokes	Rotten Tomatoes	IMDB	Poetry	Sonnets	Plays				
Raw Data	3.70	2.07	1.78	7.17	2.84	5.87	15.07				
Baseline	3.67	2.07	1.77	7.25	3.01	6.08	16.09				
FedRW (Ours)	3.65	2.08	1.75	7.00	2.66	5.75	14.50				

Evaluation: Model Performance

• Evaluation on mainstream models

Table 7: Model perplexity (\downarrow) on test set under 30% duplication percentage on mainsteam models

Model	Method	Dataset						
1,100.01	1/10/11/04	Haiku	Jokes	Rotten	Poetry	Sonnets	Plays	
Qwen3-0.6B	Baseline	2.47	2.61	1.71	2.54	4.07	8.21	
	FedRW (Ours)	2.36	2.44	1.59	2.21	3.62	7.23	
Qwen2.5-0.5B-	Baseline	2.21	2.48	1.58	2.28	4.11	11.77	
Instruct	FedRW (Ours)	2.12	2.36	1.55	2.03	3.84	9.92	
Llama-3.2-1B-	Baseline	2.14	2.34	1.65	2.39	4.11	18.35	
Instruct	FedRW (Ours)	2.09	2.21	1.54	1.99	4.00	16.03	

Evaluation: Model Performance

Evaluation on larger models

Table 8: Model perplexity (\downarrow) on test set under 30% duplication percentage on larger models

Model	Method	Dataset						
		Haiku	Jokes	Rotten	Poetry	Sonnets	Plays	Twitter
Qwen2.5-3B-	Baseline	1.69	2.09	2.20	2.33	4.14	9.17	3.35
Instruct	FedRW (Ours)	1.55	1.94	2.01	1.85	3.29	7.53	2.46
Qwen2.5-7B-	Baseline	1.68	2.07	1.74	2.09	4.52	8.82	2.24
Instruct	FedRW (Ours)	1.49	1.95	1.61	1.81	3.43	6.54	1.35

Evaluation: Model Performance

Evaluation on Non-IID settings

Table 9: Model Perplexity (\downarrow) on test set on the Non-IID settings

Method	IID	Quantity Skew	Label Skew	Feature Skew	
Baseline	1.71	2.02	2.44	3.43	
FedRW (Ours)	1.59	1.96	1.66	2.70	

- Quantity & Label Skew: we categorize the *Rotten Tomatoes* dataset by the binary (0/1) labels across 5 clients, with proportions set to [40%, 20%, 20%, 10%, 10%] and label distributions as [(0.5, 0.5), (0.6, 0.4), (0.4, 0.6), (0.9, 0.1), (0.1, 0.9)], respectively.
- Feature Skew: we allocate *Poetry*, *Sonnets*, and *Plays* to separate clients, as these datasets differ distinctly in terms of text structure, sentence length, and lexical and syntactic complexity.

Thank you for listening!