39th Conference on Neural Information Processing Systems (NeurIPS 2025)

Xin Liu^{1,2}, Haoran Li^{1,2}*, Dongbin Zhao^{1,2}

lihaoran2015@ia.ac.cn

¹MAIS,Institute of Automation, Chinese Academy of Sciences ²School of Artificial Intelligence, University of Chinese Academy of Sciences

DRL requires expert rewards.

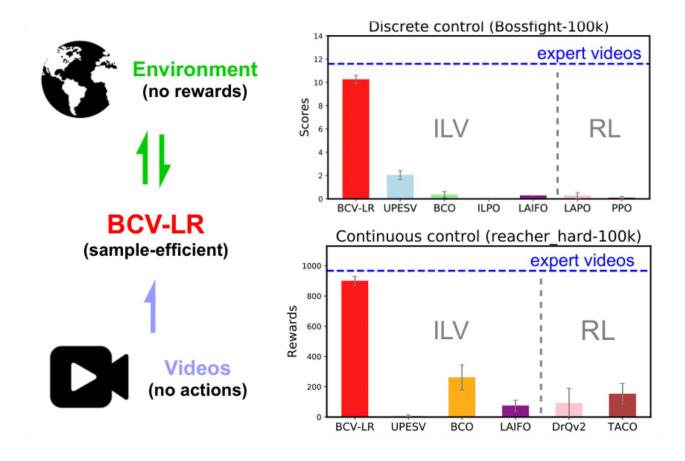
BC requires action-labeld expert trajectories.

-- They are expensive and even unavailable in some domains!

Videos are a kind of supervisory information that is much easier to obtain.

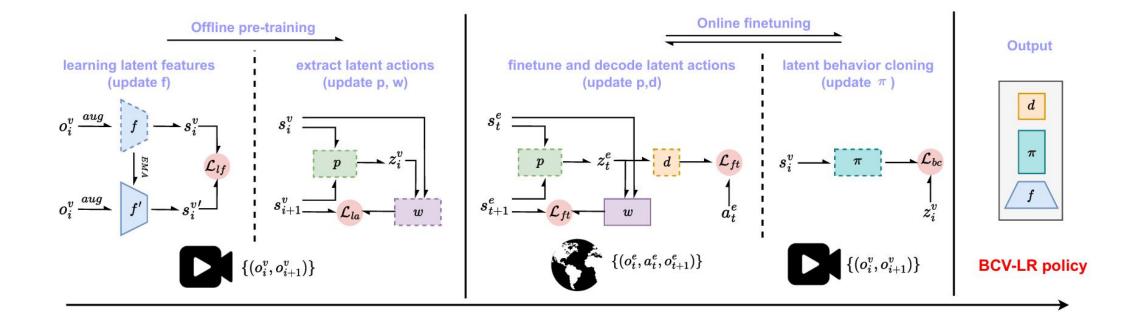
-- Current sota methods cannot balance performance and efficiency!

Is it possible to balance the effectiveness and sample efficiency in visual policy learning, where only videos are accessible supervisions?



BCV-LR efficiently learn policies from action-free videos in reward-free environments.

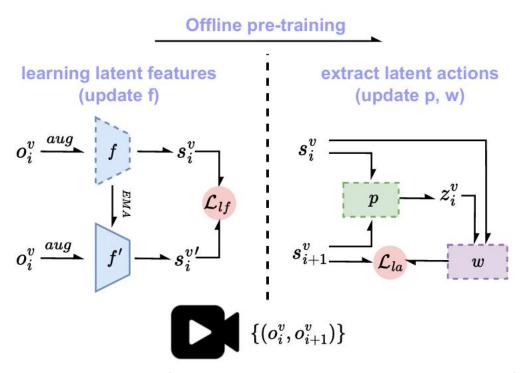
To the best of our knowledge, our work for the first time demonstrates that videos can support extremely sample-efficient visual policy learning, without the need for expert actions or rewards.



BCV-LR addresses ILV problem by estimating the expert actions contained in the videos. The predicted actions are used to obtain a policy through behavior cloning.

It contains two stages: an offline pre-training stage and an online finetuning stage.

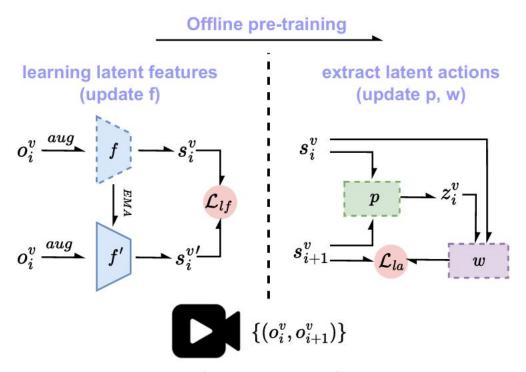
1. offline pre-training



1.1 BCV-LR first pre-trains a self-supervised visual encoder f over the videos, aiming to extract the action-related information from raw pixels and thus alleviating the learning difficulty for both action prediction and policy cloning.

For proceen
$$\mathcal{L}_{lf} = -\log \frac{\exp(u(s_i^v)^\top W s_i^{v\prime})}{\sum_{j=1}^N \exp(u(s_i^v)^\top W s_j^{v\prime})} + \alpha ||v(s_i^v) - aug(o_i^v)||^2,$$
For DMControl
$$L_{lf} = -y_{i+1}^v \log x_i^v.$$

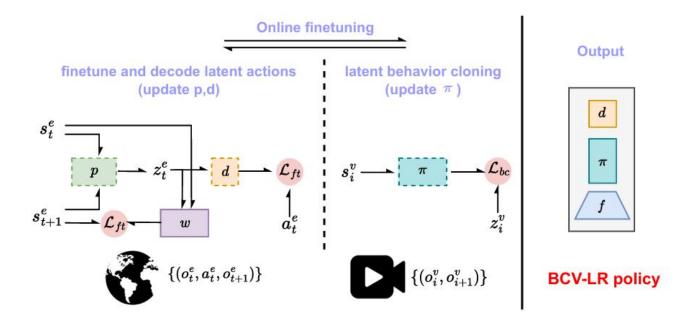
1. offline pre-training



1.2 Based on the pre-trained latent features, BCV-LR employs another trainable world model w along with the latent action predictor p, optimizing a dynamics-based objective in an unsupervised manner. This aims to obtain the latent actions between consecutive video frames.

$$\mathcal{L}_{la} = ||w(s_i^v, z_i^{vq}) - s_{i+1}^v||^2.$$

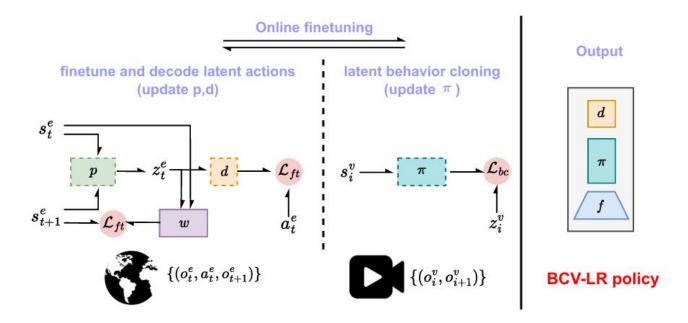
2. online finetuning and policy learning



2.1 In the online stage, BCV-LR fine-tunes the latent actions with the pretrained world model w over the collected reward-free transitions, aligning latent actions to the real action space via a latent action decoder d.

$$\mathcal{L}_{ft} = -a_t^{eT} \log(\text{softmax}[d(z_t^e)]) + \beta ||w(s_t^e, z_t^{vq}) - s_{t+1}^e||^2,$$

2. online finetuning and policy learning

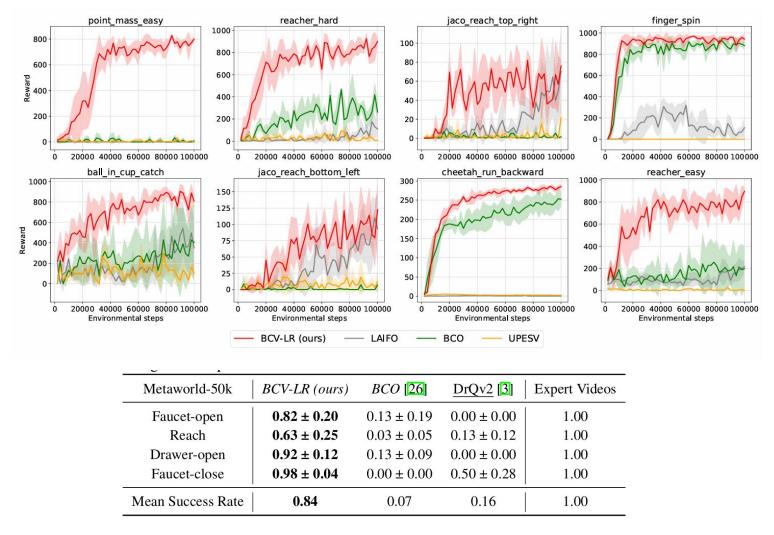


2.2 Simultaneously, BCV-LR trains a latent policy pi that clones the latent actions, which shares the latent feature encoder f and latent action decoder d to interact with the environment. This enriches collected data for further latent action finetuning, resulting in an iterative improvement. Note that f, pi, and d together form the final policy of BCV-LR.

$$\mathcal{L}_{bc} = ||\pi(s_i^v) - z_i^v||^2.$$

			-		<u>*</u>			
Task	BCV-LR (ours)	UPESV [28]	BCO [26]	<i>ILPO</i> [27]	LAIFO 50	<u>LAPO</u> [21]	<u>PPO</u> [63]	Expert Videos
Bigfish	35.9 ± 2.0	30.5 ± 1.6	3.6 ± 3.7	0.8 ± 0.1	0.8 ±0.0	20.6 ± 0.7	0.9 ± 0.1	36.3
Maze	9.9 ± 0.1	9.7 ± 0.2	7.4 ± 2.4	4.2 ± 0.3	4.3 ± 0.4	9.6 ± 0.1	5.0 ± 0.7	10.0
Heist	9.3 ± 0.1	9.4 ± 0.3	7.6 ± 1.9	6.7 ± 0.5	5.4 ± 0.6	9.4 ± 0.3	3.7 ± 0.2	9.7
Coinrun	8.9 ± 0.0	7.4 ± 0.2	6.7 ± 0.9	3.7 ± 1.3	4.7 ± 0.1	6.2 ± 0.4	4.1 ± 0.5	9.9
Plunder	4.4 ± 0.2	3.5 ± 0.7	4.2 ± 0.3	2.2 ± 1.3	3.2 ± 0.9	4.8 ± 0.1	4.4 ± 0.4	11.5
Dodgeball	12.4 ± 0.8	9.1 ± 0.8	5.4 ± 1.1	0.6 ± 0.1	0.8 ± 0.2	5.9 ± 1.1	1.1 ± 0.2	13.5
Jumper	7.5 ± 0.3	6.6 ± 0.2	6.4 ± 0.3	3.1 ± 0.6	3.9 ± 0.4	7.3 ± 0.2	3.5 ± 0.7	8.5
Climber	9.4 ± 0.6	6.8 ± 0.6	3.3 ± 0.2	3.4 ± 0.5	2.7 ± 0.9	4.7 ± 0.3	2.2 ± 0.2	10.2
Fruitbot	27.5 ± 1.5	20.6 ± 1.6	3.5 ± 0.5	-2.0 ± 0.7	-2.5 ± 0.1	0.5 ± 0.3	-1.9 ± 1.0	29.9
Starpilot	54.8 ± 1.4	15.0 ± 0.8	12.8 ± 13.9	0.5 ± 0.7	2.0 ± 0.7	20.3 ± 1.6	2.6 ± 0.9	67.0
Ninja	7.2 ± 0.3	6.3 ± 0.3	4.2 ± 1.1	2.2 ± 1.1	3.0 ± 0.1	5.2 ± 0.1	3.4 ± 0.3	9.5
Miner	11.6 ± 0.2	9.3 ± 1.2	5.8 ± 1.3	1.2 ± 0.4	1.2 ± 0.2	6.7 ± 0.6	1.2 ± 0.2	11.9
Caveflyer	4.6 ± 0.2	3.5 ± 0.6	2.8 ± 1.1	3.2 ± 0.3	2.4 ± 0.9	3.9 ± 0.1	3.0 ± 0.4	9.2
Leaper	4.0 ± 0.2	2.9 ± 0.3	2.5 ± 0.5	2.6 ± 0.2	1.9 ± 0.2	2.7 ± 0.2	2.6 ± 0.3	7.4
Chaser	3.1 ± 0.5	0.8 ± 0.1	0.8 ± 0.0	0.7 ± 0.0	0.6 ± 0.1	0.8 ± 0.0	0.4 ± 0.2	10.0
Bossfight	10.3 ± 0.3	2.0 ± 0.4	0.4 ± 0.3	0.1 ± 0.0	0.3 ± 0.0	0.3 ± 0.3	0.1 ± 0.1	11.6
Mean	13.8	9.0	4.8	2.1	2.2	6.8	2.3	16.6
Video-norm Mean	0.79	0.58	0.38	0.22	0.22	0.48	0.22	1.00

Results on 16 discrete Procgen tasks. Compared with state-of-the-art ILV and RL baselines, BCV-LR achieve much higher sample efficiency.



Results on 12 continuous tasks (DMControl and Metaworld). Compared with state-of-the-art ILV and RL baselines, BCV-LR achieve much higher sample efficiency.

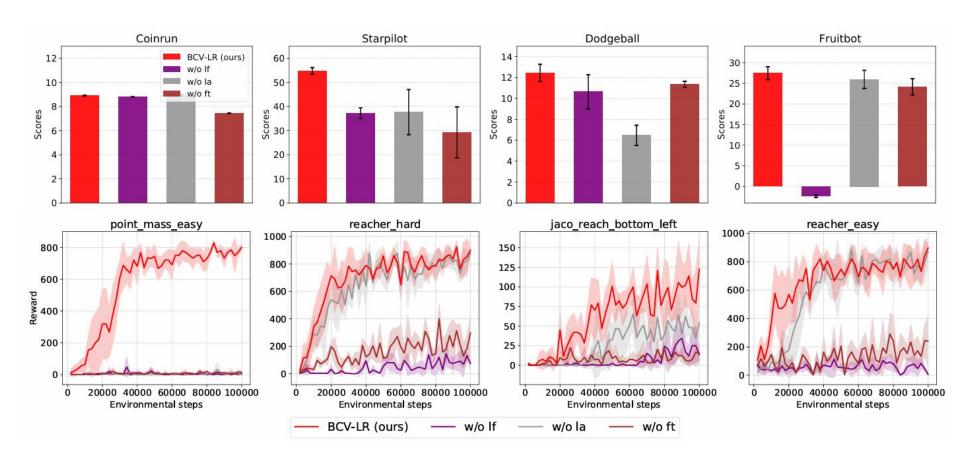


Figure 4: Ablation study on both discrete control and continuous control.

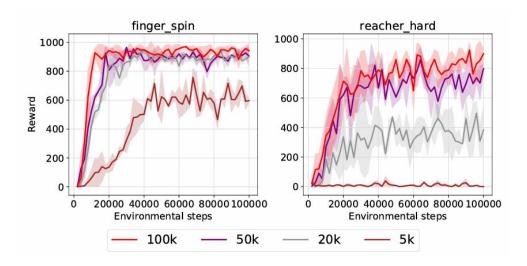


Figure 5: The training curves of BCV-LR when given different numbers of action-free video transitions. 50k video transitions are enough for BCV-LR to learn an effective policy.

Table 3: Multi-task pre-training and adaptation of BCV-LR. BCV-LR-M denotes the variant of BCV-LR with multi-task pre-training. PPO-S and BCV-LR-S denote training under the default single-task setting, i.e., they are the same as those in Section 4.2.

Task	BCV-LR-M	BCV-LR-S	PPO-S[63]	Expert Videos
Bigfish Maze Starpilot	32.2 ± 2.0 9.6 ± 0.1 44.3 ± 1.9	$\begin{vmatrix} 35.9 \pm 2.0 \\ 9.9 \pm 0.1 \\ 54.8 \pm 1.4 \end{vmatrix}$	0.9 ± 0.1 5.0 ± 0.7 2.6 ± 0.9	36.3 10.0 67.0
Bossfight Dodgeball	$\begin{array}{ c c c } 5.5 \pm 0.3 \\ 9.5 \pm 0.3 \end{array}$	$ \begin{array}{ c c c c c } 10.3 \pm 0.3 \\ 12.4 \pm 0.8 \end{array} $	0.1 ± 0.1 1.1 ± 0.2	11.6 13.5

39th Conference on Neural Information Processing Systems (NeurIPS 2025)

Thanks for your patient watching!

