Optimal Regret Bounds via Low-Rank Structured Variation in Non-Stationary Reinforcement Learning

Tuan Dam
Hanoi University of Science and Technology
tuandq@soict.hust.edu.vn

Motivation & Problem Setup

Non-Stationary RL. Sequence of communicating MDPs $(S, A, p_t, r_t)_{t=1}^T$ with diameter D_{max} where transitions and rewards evolve over time.

Variation Budgets (quantify non-stationarity):

$$B_r = \sum_{t} \max_{s,a} |r_{t+1}(s,a) - r_t(s,a)|,$$

$$B_p = \sum_{t} \max_{s,a} ||p_{t+1}(\cdot|s,a) - p_t(\cdot|s,a)||_1.$$

Dynamic Regret (performance metric):

$$\operatorname{DynReg}_T = \sum_{t=1}^T \left(\rho_t^* - \mathbb{E}[r_t(s_t, a_t)] \right)$$

where ρ_t^* is the optimal average reward with transition p_t and mean reward r_t . **Key Challenge.** Track changing optimal policies without discarding useful history; adapt quickly while maintaining tight confidence sets.

Structured Variation Model

Low-Rank Drift + Sparse Shocks. For transition change $\Delta P_t \in \mathbb{R}^{(SA) \times S}$:

$$\Delta P_t = \sum_{k=1}^K u_k(t) v_k w_k^{\top} + \epsilon_t$$

- $u_k(t)$: time weight of factor k
- v_k : pattern over state-action pairs
- w_k : reallocation pattern over next states
- $\bullet \epsilon_t$: sparse localized shocks

Constraints: $||w_k||_1 \le 1$, $|v_k(s, a)| \le 1$, and

 $\sum_{t} \max_{s,a} \|\epsilon_t(s,a,\cdot)\|_1 \le \delta_B B_p$

Why This Helps. Few drivers $(K \ll SA)$ move many rows jointly \Rightarrow uncertainty concentrates on K-dimensional subspace \Rightarrow regret scales with \sqrt{K} not \sqrt{SA} .

Key Contributions

- **SVUCRL algorithm** exploiting low-rank drift structure + isolating sparse shocks
- Online low-rank tracking via randomized SVD with Frobenius guarantees
- 3 Incremental RPCA for drift/shock separation with per-step error control
- **Adaptive confidence widening** via bias-corrected local-variation estimator
- **5 Factor forecasting** + **shrinkage** for low-variance transition centers $\widetilde{O}(\sqrt{T})$ **regret** matching conjectured optimal rates

SVUCRL Algorithm (High-Level)

Inputs: windows W, W_v, W_f ; confidence δ

Main Loop $(t = 1 \dots T)$:

- **1 Act:** Play $\tilde{\pi}(s_t)$; observe r_t, s_{t+1}
- **2 Update:** Empirical \hat{r}, \hat{p} ; store $\Delta \widehat{P}_t$
- Run **RSVD** on recent changes
- Apply RPCA to separate drift/shocks
- Extract factors $\{v_k, w_k\}$ and time weights
- **4 Forecast:** One-step prediction of $u_k(t+1)$
- **Shrink:** Combine forecast + empirical via James-Stein
- **6 Widen:** Local variation \Rightarrow adaptive $\eta(s, a, t)$
- **Replan:** When episode ends, run EVI with optimistic model

Technical Components

- 1. Randomized SVD (low-rank drift)
- Track a rank-K approximation of recent transition changes over a sliding window.
- Near-best rank-K approximation in Frobenius norm:

$$||X_t - U\Sigma V^{\top}||_F^2 \le C \min_{\text{rank}(A) \le K} ||X_t - A||_F^2.$$

- 2. Incremental RPCA (drift vs. shocks)
- Decompose each change as $\Delta P_t = \hat{L}_t + \hat{S}_t$.
- \hat{L}_t : smooth low-rank drift; \hat{S}_t : sparse, localized shocks.
- Per-step cost O(SASK) with high-probability Frobenius error control.

3. Bias-Corrected Local Variation

- Short window W_v to estimate how fast $p_t(\cdot \mid s, a)$ moves.
- Bias-corrected estimator $\widehat{V}(s, a, t)$ removes sampling noise.
- Total widening:

$$\sum_{t} \eta(s_t, a_t, t) \leq \widetilde{\mathcal{O}}(\sqrt{SAB_p}).$$

Complexity & Parameters

Time Complexity: $\mathcal{O}(TSA(SK+S)\log T)$

Space Complexity: O((SA + S + W)K + SAW)

- Windows: $W = \Theta(\sqrt{T}), \ W_v = \Theta(\log T), \ W_f = \Theta(\sqrt{W})$
- RSVD: randomized SVD with a small fixed number of power iterations
- Rank: chosen adaptively from spectrum (e.g. 95% energy cutoff)
- Episodes: standard UCRL2-style doubling rule

Recommended Settings (high-level):

Main Theoretical Result

Dynamic Regret Bound (w.h.p. $1 - \delta$):

DynReg_T =
$$\widetilde{\mathcal{O}}(D_{\max}S\sqrt{AT})$$

+ $D_{\max}\sqrt{(B_r+B_p)KST}$
+ $D_{\max}\delta_B B_p$

Three Terms Explained:

- $\mathbf{1}D_{\max}S\sqrt{AT}$: the standard statistical error for learning environment dynamics.
- $O_{\max}\sqrt{(B_r+B_p)KST}$: **Non-stationarity** regret with \sqrt{K} instead of full SA
- $\bullet D_{\max} \delta_B B_p$: **Residual** for sparse shocks (negligible if δ_B small)

Key Improvement: \sqrt{T} dependence vs. prior $T^{3/4}$ bounds; \sqrt{K} vs. \sqrt{SA} when drift is low-rank.

Shrinkage & Forecasting

Factor Forecasting:

- For each factor k, forecast $u_k(t+1)$ using simple time-series models (exponential smoothing / AR models).
- Select the best forecasting model per factor on a short validation window.

James-Stein Shrinkage (key idea):

$$\widetilde{p}_{t+1} = (1 - \lambda_t) \, \widehat{p}_{t+1} + \lambda_t \, \widehat{p}_{t+1}^{\text{pred}}.$$

- \hat{p}_{t+1} : empirical transition estimate; $\hat{p}_{t+1}^{\text{pred}}$: model-based forecast.
- $\bullet \lambda_t$ trades off empirical variance vs. forecast bias and is estimated from data.
- As samples grow, risk approaches that of the best (oracle) combination.

Comparison to Prior Work

SWUCRL2-CW [Cheung et al. 2020]:

$$\widetilde{\mathcal{O}}(D_{\max}(B_r + B_p)^{1/4} S^{2/3} A^{1/2} T^{3/4})$$

SVUCRL (Ours):

$$\widetilde{\mathcal{O}}(D_{\max}S\sqrt{AT} + D_{\max}\sqrt{(B_r + B_p)KST}) + D_{\max}\delta_B B_p$$

Improvements:

- \sqrt{T} vs. $T^{3/4}$ dependence
- \sqrt{K} vs. $S^{2/3}A^{1/2}$ in non-stationary term

• Matches \sqrt{T} lower bounds (up to logs)

• Exploits structure when $K \ll SA$

When SVUCRL Works Best

Ideal Conditions:

- Drift is truly low-rank $(K \ll SA)$
- Occasional localized shocks (sparse ϵ_t)
- Smooth factor evolution (good forecasting)
- Sufficient visits for shrinkage

Parameter Guidelines:

- Choose $W, W_v, W_f \propto \sqrt{T}$, then adjust based on observed change rate
- Use a small fixed number of power iterations and mild oversampling in RSVD
- Adaptive rank via 95% energy or a clear spectral gap
- Episode-doubling for EVI triggers (as in UCRL2)

Limitations & Future Work

Current Limitations:

- **1 Model mismatch:** Full-rank drift or dominant shocks reduce advantage
- **Assumptions:** Requires incoherence for RPCA; sparse support constraints
- 3 Tuning: Windows, rank, RSVD parameters need selection
- **4 Scale:** Very large (S, A) may need function approximation
- 5 Theory-practice gap: No empirical validation yet

Key Takeaways

- •Structure matters: Exploiting low-rank drift improves regret from $T^{3/4}$ to \sqrt{T}
- ② Dimension reduction: \sqrt{K} factor vs. \sqrt{SA} enables scaling
- **3 Optimal rates:** Matches conjectured lower bounds.
- **Practical tools:** RSVD, RPCA, shrinkage, adaptive widening all contribute
- **6 Open question:** Empirical performance in real applications

References & Contact

Key References:

- Cheung et al. (2020): SWUCRL2-CW
- Halko et al. (2011): Randomized SVD
- Candès et al. (2011): Robust PCA
- Jaksch et al. (2010): UCRL2

Contact: tuandq@soict.hust.edu.vn
Acknowledgments: Funded by HUST Project No. T2024-TD-024