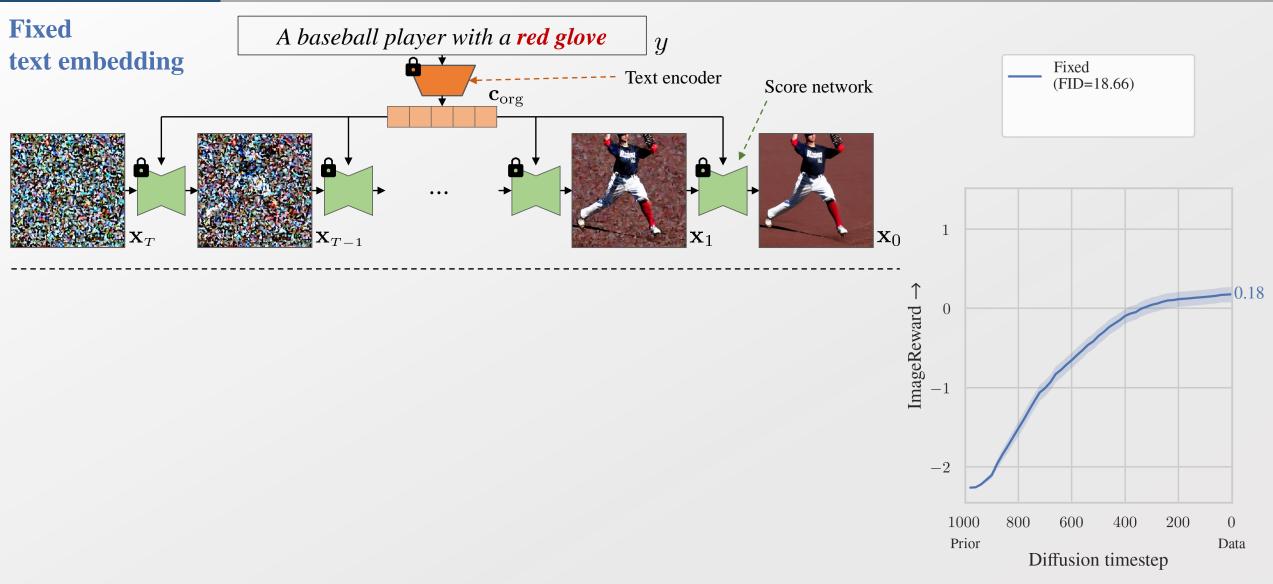


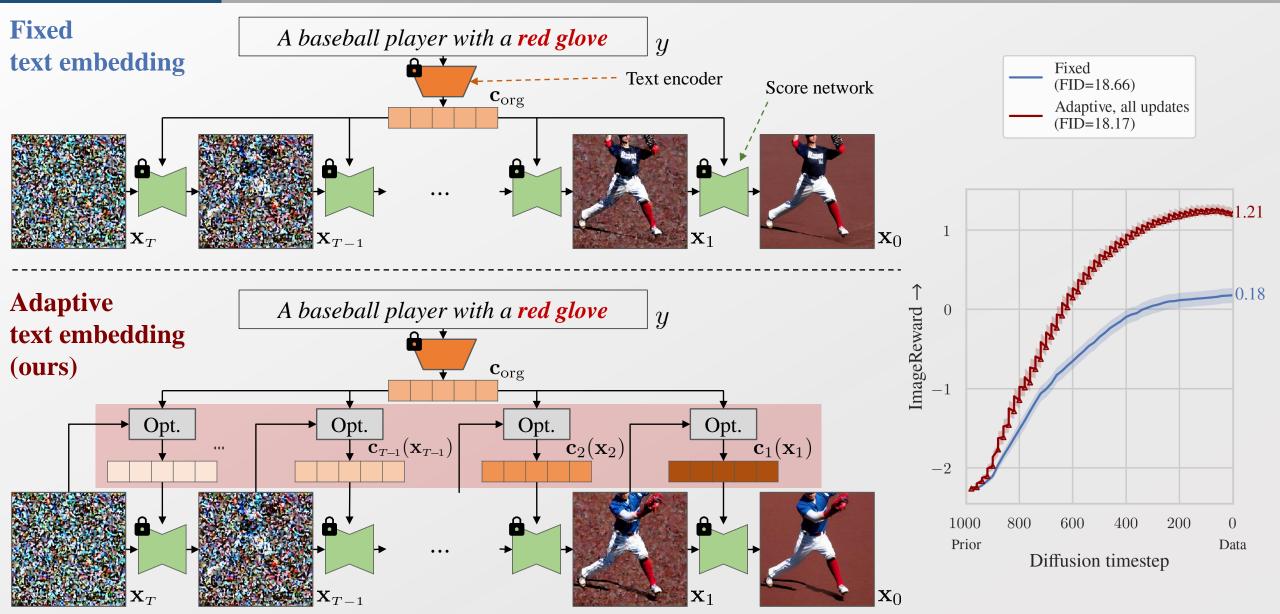
Diffusion Adaptive Text Embedding for Text-to-Image Diffusion Models

Byeonghu Na¹, Minsang Park¹, Gyuwon Sim¹, Donghyeok Shin¹, HeeSun Bae¹, Mina Kang¹, Se Jung Kwon², Wanmo Kang¹, II-Chul Moon^{1,3}

Overview Diffusion Adaptive Text Embedding (DATE)

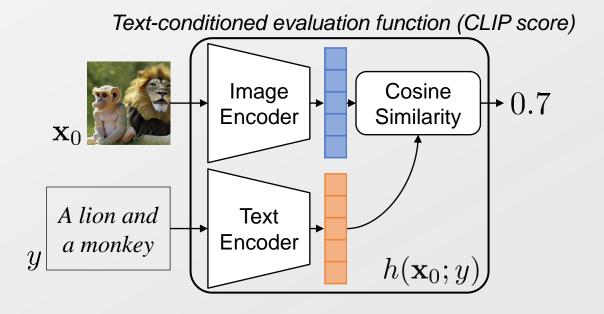


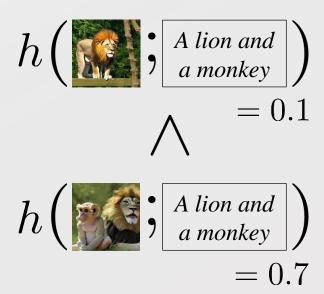
Overview Diffusion Adaptive Text Embedding (DATE)



Text-Conditioned Evaluation Function

- Text-conditioned evaluation function $h(\mathbf{x}_0; y) \in \mathbb{R}$ \leftarrow Reward function
 - Evaluate the quality of a generated image in the data space based on a given text condition.
 - Using metrics commonly applied in text-to-image generation evaluation, e.g., CLIP score, ImageReward.
- Limitation of previous usage
 - Only for evaluation purpose without being incorporated into the sampling process.
 - Only for evaluation on the final sample at diffusion timestep 0.
- \rightarrow We directly leverage h as the learning objective during the intermediate periods of sampling process.





· \mathbf{x}_0 : image

 \cdot y: text condition

• Goal: Find the adaptive text embedding $c_{1:T}$ that maximizes the reward h from the samples generated by the diffusion sampling process p_{θ}

$$\max_{\mathbf{c}_{1:T}} \mathbb{E}_{\mathbf{x}_T \sim p_T, \mathbf{x}_{0:T-1} \sim \prod_{\tau=1}^T p_{\boldsymbol{\theta}}(\mathbf{x}_{\tau-1} \mid \mathbf{x}_{\tau}, \mathbf{c}_{\tau})} [h(\mathbf{x}_0; y)]$$
Diffusion sampling process

 \cdot **x**₀: image

 $\cdot y$: text condition

 \cdot \mathbf{c}_t : text embedding at t

Goal: Find the adaptive text embedding $c_{1:T}$ that maximizes the reward h from the samples generated by the diffusion sampling process p_{θ}

$$\max_{\mathbf{c}_{1:T}} \mathbb{E}_{\mathbf{x}_T \sim p_T, \mathbf{x}_{0:T-1} \sim \prod_{\tau=1}^T p_{\boldsymbol{\theta}}(\mathbf{x}_{\tau-1} \mid \mathbf{x}_{\tau}, \mathbf{c}_{\tau})} [h(\mathbf{x}_0; y)]$$
Diffusion sampling process

Introduce the constraints for tractable optimization

Sequential optimization like diffusion sampling process

$$\max_{\mathbf{c}_1} \cdots \max_{\mathbf{c}_t} \mathbb{E}_{\mathbf{x}_T \sim p_T, \mathbf{x}_{0:T-1} \sim \prod_{\tau=1}^T p_{\boldsymbol{\theta}}(\mathbf{x}_{\tau-1} \mid \mathbf{x}_{\tau}, \mathbf{c}_{\tau})} [h(\mathbf{x}_0; y)]$$

Finding the shared embedding for remaining sampling steps & Close to the original embedding

$$\max_{\mathbf{c}_1 \in \mathcal{C}_1} \cdots \max_{\mathbf{c}_t \in \mathcal{C}_t} \mathbb{E}_{\mathbf{x}_T \sim p_T, \mathbf{x}_{0:T-1} \sim \prod_{\tau=1}^T p_{\boldsymbol{\theta}}(\mathbf{x}_{\tau-1} \mid \mathbf{x}_{\tau}, \mathbf{c}_{\tau})} [h(\mathbf{x}_0; y)]$$

- $\cdot \mathcal{C}_t := \{ \mathbf{c}_t : || \mathbf{c}_t \mathbf{c}_{\text{org}} ||_2 \le \rho, \mathbf{c}_\tau = \mathbf{c}_t \ \forall \tau < t \}$
- \cdot \mathbf{c}_{org} : original text embedding
- $\cdot \rho$: scale hyperparameter

 $\cdot y$: text condition

 \cdot \mathbf{c}_t : text embedding at t

 \cdot \mathbf{x}_0 : image

• Goal: Find the adaptive text embedding $c_{1:T}$ that maximizes the reward h from the samples generated by the diffusion sampling process p_{θ}

$$\max_{\mathbf{c}_{1:T}} \mathbb{E}_{\mathbf{x}_{T} \sim p_{T}, \mathbf{x}_{0:T-1} \sim \prod_{\tau=1}^{T} p_{\boldsymbol{\theta}}(\mathbf{x}_{\tau-1} \mid \mathbf{x}_{\tau}, \mathbf{c}_{\tau})} [h(\mathbf{x}_{0}; y)]$$
Diffusion sampling process

Introduce the constraints for tractable optimization

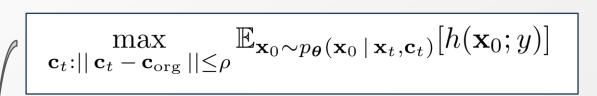
From t = T to 1,
$$\max_{\mathbf{c}_t:||\mathbf{c}_t - \mathbf{c}_{\text{org}}||_2 \le \rho} \mathbb{E}_{\mathbf{x}_0 \sim p_{\boldsymbol{\theta}}(\mathbf{x}_0 \mid \mathbf{x}_t, \mathbf{c}_t)}[h(\mathbf{x}_0; y)]$$

- \cdot \mathbf{c}_{org} : original text embedding
- \cdot ρ : scale hyperparameter
- \rightarrow Maximize the expectation of the reward with respect to $p_{\theta}(x_0|x_t,c_t)$

- \cdot \mathbf{x}_0 : image
- $\cdot y$: text condition
- \cdot \mathbf{c}_t : text embedding at t

But, this objective is computationally expensive due to the multiple network evaluations for sampling.

But, this objective is computationally expensive due to the multiple network evaluations for sampling.



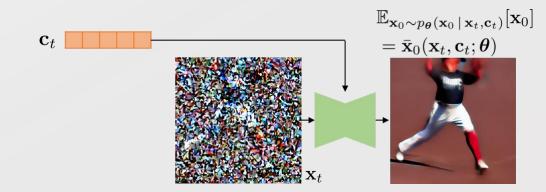
Apply first-order Taylor approx. of h around \bar{x}_0

$$\mathbb{E}_{\mathbf{x}_0 \sim p_{\boldsymbol{\theta}}(\mathbf{x}_0 \mid \mathbf{x}_t, \mathbf{c}_t)}[h(\mathbf{x}_0; y)] \approx h(\mathbb{E}_{\mathbf{x}_0 \sim p_{\boldsymbol{\theta}}(\mathbf{x}_0 \mid \mathbf{x}_t, \mathbf{c}_t)}[\mathbf{x}_0]; y)$$

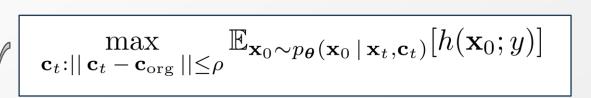
$$:= \bar{\mathbf{x}}_0(\mathbf{x}_t, \mathbf{c}_t; \boldsymbol{\theta})$$

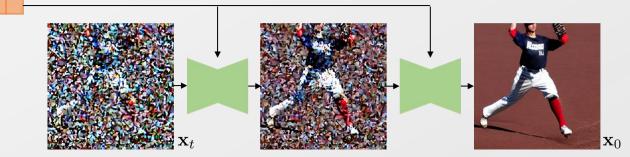
$$\max_{\mathbf{c}_t:||\mathbf{c}_t-\mathbf{c}_{\text{org}}||\leq \rho} h(\bar{\mathbf{x}}_0(\mathbf{x}_t,\mathbf{c}_t;\boldsymbol{\theta});y) =: h_t(\mathbf{x}_t,\mathbf{c}_t;y,\boldsymbol{\theta})$$

• Maximize the reward on the mean predicted image \bar{x}_0 given current perturbed image x_t and text embedding c_t .



But, this objective is computationally expensive due to the multiple network evaluations for sampling.





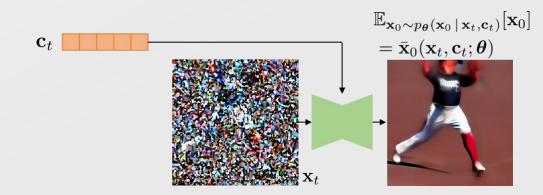
Apply first-order Taylor approx. of h around \bar{x}_0

$$\mathbb{E}_{\mathbf{x}_0 \sim p_{\boldsymbol{\theta}}(\mathbf{x}_0 \mid \mathbf{x}_t, \mathbf{c}_t)}[h(\mathbf{x}_0; y)] \approx h(\mathbb{E}_{\mathbf{x}_0 \sim p_{\boldsymbol{\theta}}(\mathbf{x}_0 \mid \mathbf{x}_t, \mathbf{c}_t)}[\mathbf{x}_0]; y)$$

$$:= \bar{\mathbf{x}}_0(\mathbf{x}_t, \mathbf{c}_t; \boldsymbol{\theta})$$

$$\max_{\mathbf{c}_t:||\mathbf{c}_t-\mathbf{c}_{\text{org}}||\leq \rho} h(\bar{\mathbf{x}}_0(\mathbf{x}_t,\mathbf{c}_t;\boldsymbol{\theta});y) =: h_t(\mathbf{x}_t,\mathbf{c}_t;y,\boldsymbol{\theta})$$

- Maximize the reward on the mean predicted image \bar{x}_0 given current perturbed image x_t and text embedding c_t .
- Using the Tweedie's formula, the mean predicted image \bar{x}_0 can be computed via a single score network evaluation.



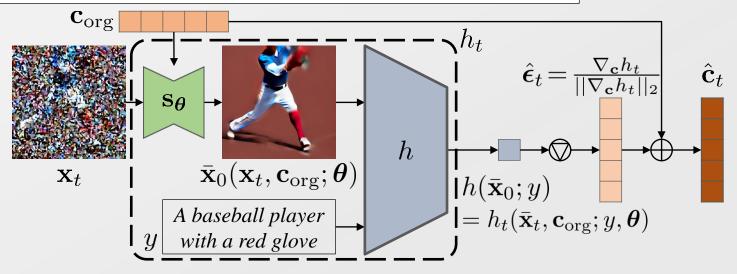
$$\bar{\mathbf{x}}_0(\mathbf{x}_t, \mathbf{c}_t; \boldsymbol{\theta}) = \frac{1}{\sqrt{\bar{\alpha}_t}} (\mathbf{x}_t + (1 - \bar{\alpha}_t) \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}_t, \mathbf{c}_t, t))$$

Update Process of DATE

• To update the text embeddings for each timestep, we use a first-order Taylor approximation for computational efficiency, inspired by the inner maximization of sharpness-aware minimization.

$$\begin{aligned} \mathbf{c}_t &= \mathbf{c}_{\text{org}} + \boldsymbol{\epsilon}_t \\ \boldsymbol{\epsilon}_t^* &:= \argmax_{\|\boldsymbol{\epsilon}_t\|_2 \le \rho} h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}} + \boldsymbol{\epsilon}_t; y, \boldsymbol{\theta}) \\ &\approx \argmax_{\|\boldsymbol{\epsilon}_t\|_2 \le \rho} \left\{ h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}}; y, \boldsymbol{\theta}) + \boldsymbol{\epsilon}_t^{\text{T}} \nabla_{\mathbf{c}} h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}}; y, \boldsymbol{\theta}) \right\} \\ &= \argmax_{\|\boldsymbol{\epsilon}_t\|_2 \le \rho} \left\{ h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}}; y, \boldsymbol{\theta}) + \boldsymbol{\epsilon}_t^{\text{T}} \nabla_{\mathbf{c}} h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}}; y, \boldsymbol{\theta}) \right\} \end{aligned}$$

$$\hat{\mathbf{c}}_t = \mathbf{c}_{\text{org}} + \rho \frac{\nabla_{\mathbf{c}} h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}}; y, \boldsymbol{\theta})}{||\nabla_{\mathbf{c}} h_t(\mathbf{x}_t, \mathbf{c}_{\text{org}}; y, \boldsymbol{\theta})||_2}$$



- \bigcirc : the normalized gradient with respect to c
- ⊕: summation

Theoretical Analysis: Performance Guarantee

• Both unconstrained and constrained optimizations of the text embedding produce a better text embedding than the fixed text embedding.

$$\begin{aligned} & \max_{\mathbf{c}_{1:T}} \mathbb{E}_{\mathbf{x}_{T} \sim p_{T}, \mathbf{x}_{0:T-1} \sim \prod_{\tau=1}^{T} p_{\boldsymbol{\theta}}(\mathbf{x}_{\tau-1} \mid \mathbf{x}_{\tau}, \mathbf{c}_{\tau})}[h(\mathbf{x}_{0}; y)] & \text{// Unconstrained optimization} \\ & = \max_{\mathbf{c}_{1}} \cdots \max_{\mathbf{c}_{t}} \mathbb{E}_{\mathbf{x}_{T} \sim p_{T}, \mathbf{x}_{0:T-1} \sim \prod_{\tau=1}^{T} p_{\boldsymbol{\theta}}(\mathbf{x}_{\tau-1} \mid \mathbf{x}_{\tau}, \mathbf{c}_{\tau})}[h(\mathbf{x}_{0}; y)] \\ & \geq \max_{\mathbf{c}_{1} \in \mathcal{C}_{1}} \cdots \max_{\mathbf{c}_{t} \in \mathcal{C}_{t}} \mathbb{E}_{\mathbf{x}_{T} \sim p_{T}, \mathbf{x}_{0:T-1} \sim \prod_{\tau=1}^{T} p_{\boldsymbol{\theta}}(\mathbf{x}_{\tau-1} \mid \mathbf{x}_{\tau}, \mathbf{c}_{\tau})}[h(\mathbf{x}_{0}; y)] & \text{// Constrained optimization} \\ & \geq h(\mathbf{c}_{\text{org}}, \cdots, \mathbf{c}_{\text{org}}) & \text{// Fixed text embedding} \end{aligned}$$

Since DATE is derived by approximating the constrained optimization,
 it is expected to improve the quality of the generated images compared to the fixed embedding.

Theoretical Analysis: Influence on Data Space

How the DATE update influences the perturbed data?

The score function for the text embedding c_t updated by DATE can be expressed as:

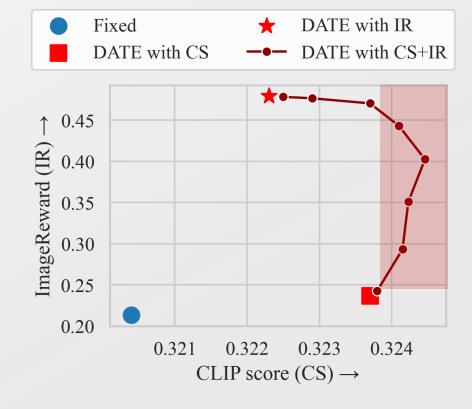
$$\nabla_{\mathbf{x}_t} \log p_{\boldsymbol{\theta}}(\mathbf{x}_t \, | \, \hat{\mathbf{c}}_t) = \nabla_{\mathbf{x}_t} \log p_{\boldsymbol{\theta}}(\mathbf{x}_t \, | \, \mathbf{c}_{\mathrm{org}}) + \rho \nabla_{\mathbf{x}_t} \Big\{ \underbrace{\frac{\nabla_{\boldsymbol{c}} h_t(\mathbf{x}_t, \mathbf{c}_{\mathrm{org}})^T}{||\nabla_{\boldsymbol{c}} h_t(\mathbf{x}_t, \mathbf{c}_{\mathrm{org}})||_2}}_{\text{Original score function}} \underbrace{\nabla_{\mathbf{c}} \log p_{\boldsymbol{\theta}}(\mathbf{x}_t \, | \, \mathbf{c}_{\mathrm{org}}) \Big\} + O(\rho^2) \\ \underbrace{\text{Original score function}}_{\text{Alignment}} \underbrace{\text{Model likelihood}}_{\text{Alignment}}$$

- This guidance improves the alignment between the evaluation function h_t and the model likelihood from the perspective of the text embedding.
- Embedding-based guidance balances semantic alignment with the underlying model distribution, enhancing prompt fidelity without reducing generation quality.

Experiments Quantitative Results

- FID: average distance between generated and reference datasets
- CLIP score: text-image embedding alignment score via CLIP
- ImageReward: text-to-image human preference score

Backbone	Method	Time	FID↓	CLIP score↑	$ImageReward \uparrow$
SD v1.5 w/ DDIM	Fixed text embedding (50 steps)	5.64	18.66	0.3204	0.2132
	Fixed text embedding (70 steps)	7.87	18.27	0.3199	0.2137
	EBCA	8.10	25.85	0.2877	-0.3128
	Universal Guidance	8.25	18.56	0.3216	0.2221
	DATE (50 steps)				
	10% update with CLIP score	7.82	17.90	0.3237	0.2364
	all updates with CLIP score	24.20	17.22	0.3292	0.2277
	10% update with ImageReward	7.82	18.61	0.3224	0.4792
	all updates with ImageReward	24.20	18.17	0.3224	1.2972
PixArt-α w/ DPM- Solver	Fixed text embedding (20 steps)	4.35	31.07	0.3201	0.8140
	Fixed text embedding (45 steps)	9.03	30.62	0.3199	0.8174
	DATE (20 steps)				
	50% update with CLIP score	8.93	30.55	0.3237	0.8287
	50% update with ImageReward	8.95	31.07	0.3221	0.9514



Performance on COCO validation set

Performance of combined metrics

DATE **consistently improves** the semantic alignment and overall image quality.

Experiments Applications

Multi-concept generation

A dog and a blue balloon

Text-guided image editing

A sculpture of a castle \rightarrow A graffiti of a castle

A cartoon of a cat \rightarrow An origami of a dog

Thank you!

Paper

Code

Contact: byeonghu.na@kaist.ac.kr