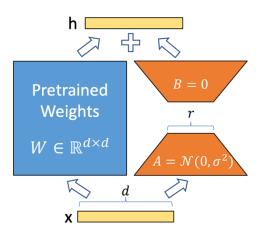


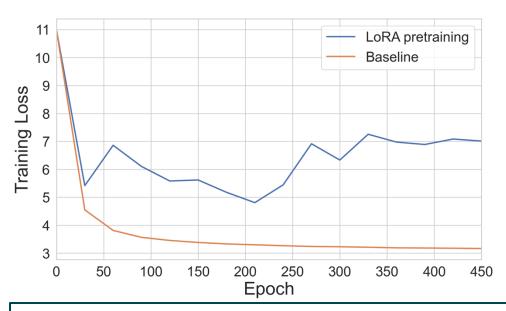
Low Rank Compression and Fine-Tuning of Neural Networks



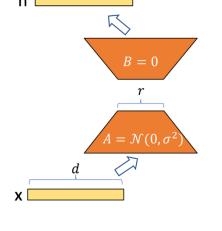
Low Rank Finetuning

- Hu et al., LoRA: Low-Rank Adaptation of Large Language Models. 2021
- Zhang et al., AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning. 2023
- Liu et al., DoRA: Weight-Decomposed Low-Rank Adaptation. 2024

$$z(x) = \sigma(Wx + AB^{\mathsf{T}}x)$$



GPT-2 on OWT, low-rank MLP: Low rank training stalls. Why?



Low Rank Compression

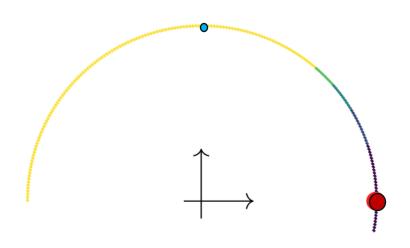
- Denton et al., Exploiting Linear Structure Within Convolutional Networks. 2014
- A. Novikov, et al., Tensorizing neural networks. 2015
- A. Tjandra, S. Sakti, and S. Nakamura. Compressing recurrent neural network with tensor train. 2017

$$z(x) = \sigma(AB^{\mathsf{T}}x)$$

Low Rank Attention

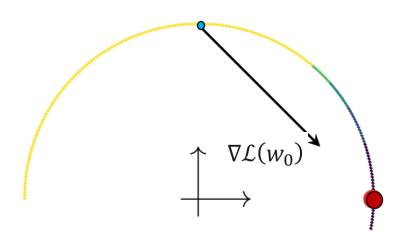
- DeepSeek-AI, "Multihhead Latent Attention". 2024
- Ainslie, et al., GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints. '23

$$z(x) = \sigma(xAB^{\mathsf{T}}x^{\mathsf{T}})$$



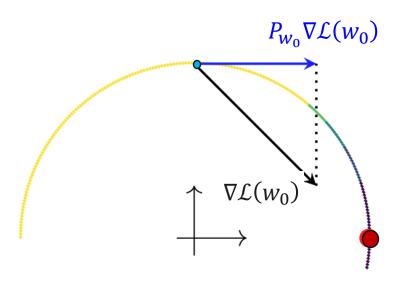
$$\min_{w \in \mathcal{M}} \mathcal{L}(w) = \frac{1}{2} \| [1,0] - w \|_2^2$$

- Manifold: Unit circle $\mathcal{M} = \{ w \in \mathbb{R}^2 : ||w|| = 1 \}$
- Initialization at w₀ = [0,1] o solution at w_∗ = [1,0] o



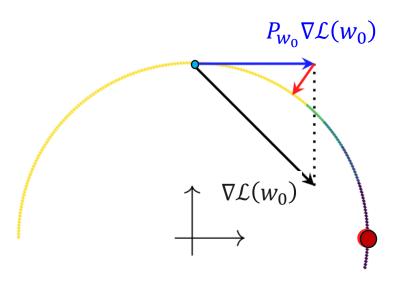
$$\min_{w \in \mathcal{M}} \mathcal{L}(w) = \frac{1}{2} \| [1,0] - w \|_2^2$$

- Manifold: Unit circle $\mathcal{M} = \{ w \in \mathbb{R}^2 : ||w|| = 1 \}$
- Initialization at w₀ = [0,1] solution at w_{*} = [1,0]
- Gradient $\nabla \mathcal{L}(w_0) = [-1,1]$



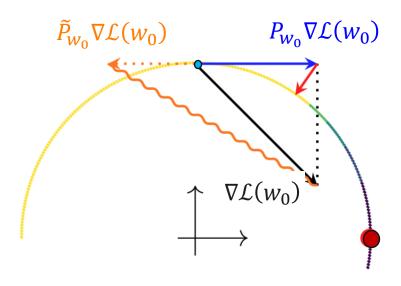
$$\min_{w \in \mathcal{M}} \mathcal{L}(w) = \frac{1}{2} \| [1,0] - w \|_2^2$$

- Manifold: Unit circle $\mathcal{M} = \{ w \in \mathbb{R}^2 : ||w|| = 1 \}$
- Initialization at $w_0 = [0,1]$ solution at $w_* = [1,0]$ •
- Gradient $\nabla \mathcal{L}(w_0) = [-1,1]$
- Riemannian gradient $P_{w_0} \nabla \mathcal{L}(w_0) = [0,1]$
 - \rightarrow orthogonal projection P_{w_0}



$$\min_{w \in \mathcal{M}} \mathcal{L}(w) = \frac{1}{2} \| [1,0] - w \|_2^2$$

- Manifold: Unit circle $\mathcal{M} = \{ w \in \mathbb{R}^2 : ||w|| = 1 \}$
- Initialization at $w_0 = [0,1]$ solution at $w_* = [1,0]$ •
- Gradient $\nabla \mathcal{L}(w_0) = [-1,1]$
- Riemannian gradient $P_{w_0} \nabla \mathcal{L}(w_0) = [0,1]$ • orthogonal projection P_{w_0}
- Retraction onto unit circle \mathcal{M}

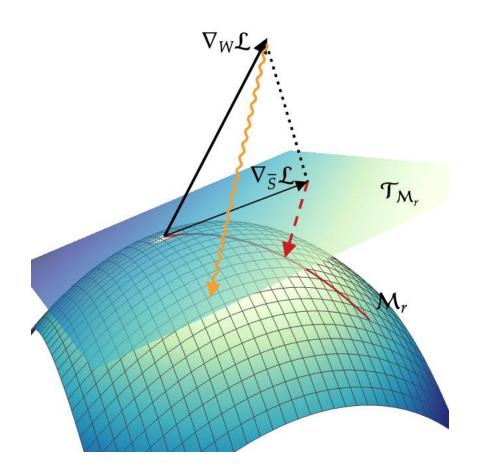


$$\dot{\mathbf{w}} = -\nabla \mathcal{L}$$
 vs $\dot{\mathbf{w}} = -\mathbf{P_w} \nabla \mathcal{L}$ vs $\dot{\mathbf{w}} = -\mathbf{\tilde{P_w}} \nabla \mathcal{L}$

$$\min_{w \in \mathcal{M}} \mathcal{L}(w) = \frac{1}{2} \| [1,0] - w \|_2^2$$

- Manifold: Unit circle $\mathcal{M} = \{ w \in \mathbb{R}^2 : ||w|| = 1 \}$
- Initialization at w₀ = [0,1] o solution at w_∗ = [1,0] o
- Gradient $\nabla \mathcal{L}(w_0) = [-1,1]$
- Riemannian gradient $P_{w_0} \nabla \mathcal{L}(w_0) = [0,1]$ • orthogonal projection P_{w_0}
- Retraction onto unit circle \mathcal{M}
- Non orthogonal \tilde{P}_{w_0} breaks the structure

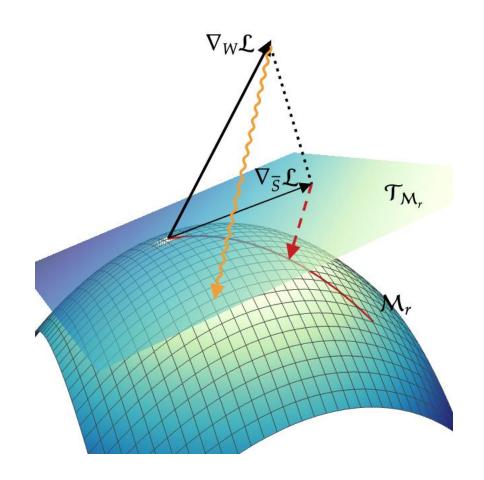
Low Rank training is manifold constrained optimization



$$\min_{\mathsf{W}\in\mathcal{M}}\mathcal{L}(\mathsf{X},\mathsf{Y};\mathsf{W})$$

- Manifold $\mathcal{M} = \{W \in \mathbb{R}^{n \times n} : rank(W) = r \}$
- LoRA ansatz: $W = AB^T$ with $A, B \in \mathbb{R}^{n \times r}$
- Gradient flow: $\dot{W} = \dot{A}B^T + A\dot{B}^T = \overbrace{P_W}^{\text{chain rule}} \nabla_W \mathcal{L}$
- \widetilde{P}_W is defined by $[A, \dot{A}]$, and $[B, \dot{B}]$
 - → not orthogonal
 - \rightarrow no steepest descent on \mathcal{M}

Low Rank training is manifold constrained optimization



$$\min_{\mathsf{W}\in\mathcal{M}}\mathcal{L}(\mathsf{X},\mathsf{Y};\mathsf{W})$$

- Manifold $\mathcal{M} = \{W \in \mathbb{R}^{n \times n} : rank(W) = r \}$
- AdaLoRA ansatz: $W = USV^T$ with $U, V \in \mathbb{R}^{n \times r}$, $S \in \mathbb{R}^{r \times r}$
- Gradient flow: $\dot{W} = \dot{U}SV^T + U\dot{S}V^T + US\dot{V}^T = \tilde{P}_W \nabla_W \mathcal{L}$
- $\widetilde{\mathsf{P}}_{\mathsf{W}}$ is defined by $\left[U,\dot{U}
 ight]$, and $\left[V,\dot{V}
 ight]$
 - → not orthogonal
 - \rightarrow no steepest descent on \mathcal{M}

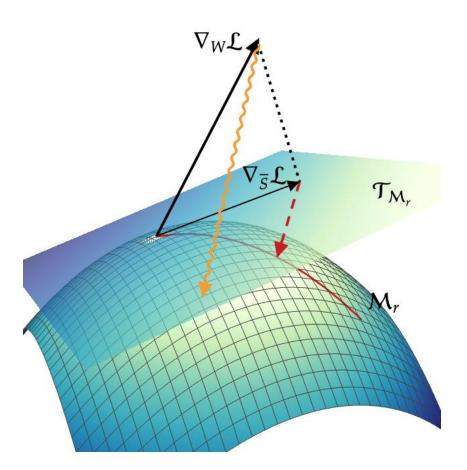
DLRT: Dynamical Low Rank Training

Efficient evolution of projected gradient flow

S.S., Zangrando, Kusch, Ceruti, Tudisco; Low-Rank Lottery Tickets ...; NeurIPS 2022

 $\dot{W} = {}^{}_{W} \nabla \mathcal{L}$

$$\min_{\mathsf{W} \in \mathcal{M}} \mathcal{L}(\mathsf{X},\mathsf{Y};\mathsf{W})$$



- Manifold $\mathcal{M} = \{W \in \mathbb{R}^{n \times n} : rank(W) = r \}$
- DLRT ansatz: $W = USV^T$ with $U, V \in \mathbb{R}^{n \times r}$, $S \in \mathbb{R}^{r \times r}$
- Gradient flow: $\dot{W} = \dot{U}SV^{T} + U\dot{S}V^{T} + US\dot{V}^{T} = P_{W}\nabla_{W}\mathcal{L}$
- Construct P_W with orthogonal bases $\overline{U} = \operatorname{ortho}\{[U,\dot{U}]\}$, and $\overline{V} = \operatorname{ortho}\{[V,\dot{V}]\}$
 - ightharpoonup Basis for tangent space $\mathcal{T}_{\mathcal{M}}$
 - \rightarrow enables steepest descent on $\mathcal M$

Memory cost – slightly better than LoRA

- Weights: $\mathcal{O}(2nr + r^2)$
- Gradients: $\mathcal{O}(2nr)$ for basis update $\mathcal{O}(r^2)$ for optimization
- Optimizer states: $O(r^2)$

Extendable to tensors

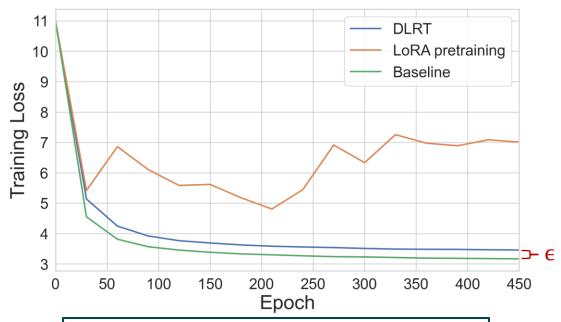
 $Zangrando\ ,\ Schotth\"{o}fer,\ Ceruti,\ Kusch,\ Tudisco;\ \textit{Geometry-aware training [...] in tensor\ Tucker\ format\ ;\ Neur IPS\ '24$

Upgrade to single step scheme

Schotthöfer, Zangrando Ceruti, Tudisco, Kusch; GeoLoRA [...]; ICLR '25

DLRT: Dynamical Low Rank Training

S.S., Zangrando, Kusch, Ceruti, Tudisco; Low-Rank Lottery Tickets ...; NeurIPS 2022 Zangrando, S.S., Ceruti, Kusch, Tudisco; Geometry-aware training [...] in tensor Tucker format; NeurIPS '24 S.S., Zangrando Ceruti, Kusch, Tudisco; GeoLoRA [...]; ICLR '25

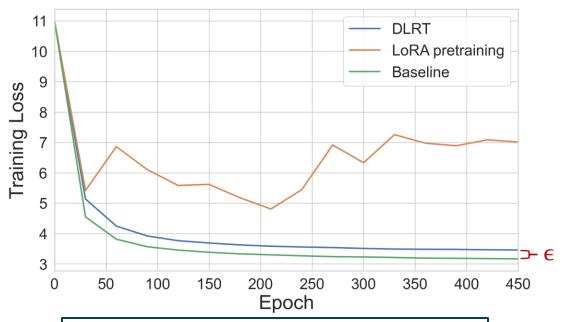


GPT-2 on OWT, low-rank MLP: DLRT beats LoRA

- DLRT inherits training robustness from full training
 - Provable: Optimality, loss descent, convergence
 - Hyperparameter can be transferred from full training
- Provable error bound to full rank training $\|W_{\text{full rank}}(t) W_{\text{DLRT}}(t)\| < \epsilon(\lambda, \vartheta)$
- Automatic rank selection (like AdaLoRA)

DLRT: Dynamical Low Rank Training

Schotthöfer, Zangrando, Kusch, Ceruti, Tudisco; Low-Rank Lottery Tickets ...; NeurIPS 2022 Zangrando, Schotthöfer, Ceruti, Kusch, Tudisco; Geometry-aware training [...] in tensor Tucker format; NeurIPS '24 Schotthöfer, Zangrando Ceruti, Tudisco, Kusch; GeoLoRA [...]; ICLR '25



GPT-2 on OWT, low-rank MLP: DLRT beats LoRA

Visit us at

- Our poster: Fri 5 Dec 4:30 p.m. PST 7:30 p.m. PST @ Hall C,D,E
- Workshop Negel Oral: Sun 7 Dec 4:00 p.m. PST 5 p.m. PST @ Upper Level Room 8

Using this method for adversarially robust compression

- Poster: Thu 4 Dec 11 a.m. PST 2 p.m. PST @ Hall C,D,E
- Oral: Thu 4 Dec 10:20 a.m. 10:40 a.m. PST @ Oral Session C
- Workshop COML: Sun 7 Dec 8 a.m. PST 5 p.m. PST@ Upper Level Ballroom 6DE

- DLRT inherits training robustness from full training
 - Provable: Optimality, loss descent, convergence
 - Hyperparameter can be transferred from full training
- Provable error bound to full rank training

$$\|W_{\text{full rank}}(t) - W_{\text{DLRT}}(t)\| < \epsilon(\lambda, \vartheta)$$

Automatic rank selection (like AdaLoRA)

What about momentum methods/Adam?

Schotthöfer, Klein, Kusch; A geometric framework for momentum-based optimizers for low-rank training; NeurIPS '25

Momentum gradient flow

DLRT Momentum gradient flow

- → Bases U, V for W can be re-used for momentum terms
 - Extendable for Adam, AdamW