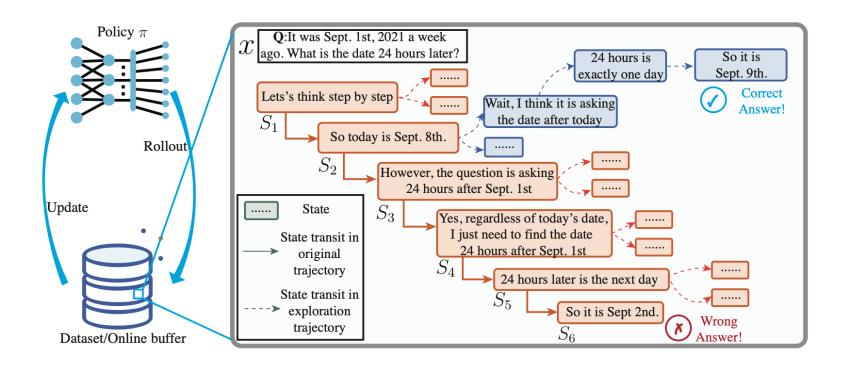
GPO: Learning from Critical Steps to Improve LLM Reasoning

Author: Jiahao Yu, Zelei Cheng, Xian Wu, Xinyu Xing

Presenter: Jiahao Yu

Northwestern

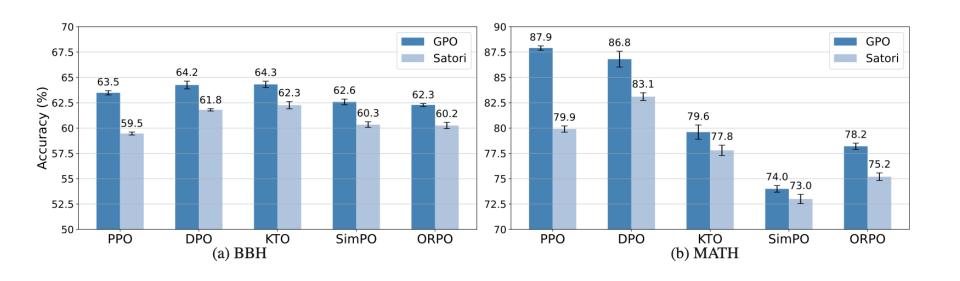


Motivation

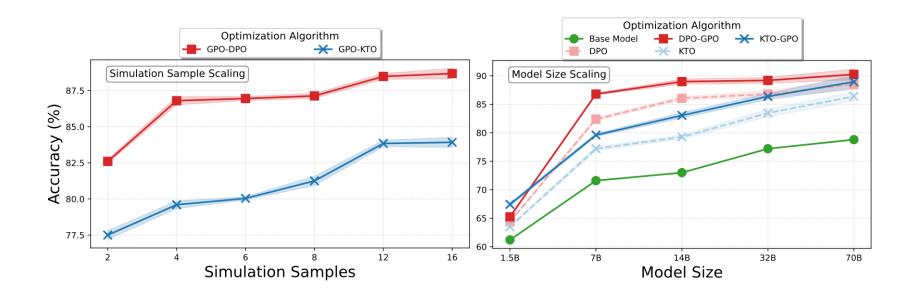
- 1. LLM Reasoning can be brittle
- 2. Standard fine-tuning treat reasoning trajectories as a whole
- 3. Previous method fail to pinpoint which specific step was critical

Our Solution: GPO

A General Framework


Algorithm 1: GPO Optimization Framework

```
1: Procedure-I: Online Policy Training (PPO-based)
 2: Input: Initial LLM policy \pi^0 = \pi_{ref}, reasoning dataset D_r
 3: for iteration = 1, 2, \dots, T do
      \mathcal{D} \leftarrow \emptyset
      for n = 1, 2, ... do
         Random sampling a question x from the reasoning dataset D_r
         Run \pi^t to generate a K-step reasoning trajectory y = (y_0, \dots, y_{K-1}) split by newlines
         Identify the critical step y_m with maximal advantage A^{\pi^t}(x, y_{0:i-1}; y_i)
         Reset \pi^t to y_m and roll-out \pi^t to generate trajectory y'=(y_m,\ldots,y'_{K-1})
         Add trajectory y' and the final reward r to \mathcal{D}
11:
      end for
      Optimize \pi^t with respect to the policy gradient loss (e.g., PPO loss) in Eqn. 1 on \mathcal{D}
13: end for
14: Procedure-II: Preference Data Generation and Optimization (DPO-based)
15: Input: Supervised-finetuned base policy \pi_{ref}, reasoning dataset D_r
16: \mathcal{D} \leftarrow \emptyset
17: for iteration = 1, 2, ..., T do
      Repeat the sampling, trajectory generation using \pi_{ref}, and critical step identification as in
       Procedure-I to extract the important step y_m from trajectory y.
      Generate two continuations starting from y_m to obtain a positive trajectory
       y^+ = (y_0, \dots, y_m, \dots, y_{K-1}^+) and a negative trajectory y^- = (y_0, \dots, y_m, \dots, y_{K-1}^-)
      Add the preference pair (x, y^+, y^-) to \mathcal{D}
21: end for
22: Optimize \pi with respect to the preference loss (e.g., DPO loss) in Eqn. 2 on \mathcal{D}
```


Experimental Results

Algorithms	Test Accuracy (%)						
	BBH	MATH	GSM8K	MMLU	MMLUPro	AIME-2024	AIME-2025
Base Model	59.97	71.60	86.50	54.09	38.80	13.33	16.67
PPO	61.82	79.60	86.96	56.66	47.47	26.67	23.33
GPO-PPO	63.48	87.80	87.44	59.39	51.05	30.00	26.67
DPO	63.20	82.40	86.05	57.08	48.28	20.00	20.00
GPO-DPO	64.25	86.80	88.48	58.93	51.93	26.67	26.67
KTO	62.86	77.20	89.31	59.42	49.02	20.00	20.00
GPO-KTO	64.31	79.60	90.25	61.35	50.52	23.33	26.67
SimPO	61.97	72.20	86.58	56.93	45.70	20.00	23.33
GPO-SimPO	62.58	74.00	88.35	57.44	47.74	23.33	26.67
ORPO	61.75	75.20	87.26	57.72	46.66	20.00	20.00
GPO-ORPO	62.28	78.20	88.17	58.72	48.65	23.33	23.33

Ablation Study

Scaling Behavior

Human Alignment

A user study found a strong correlation. Steps GPO identified as 'critical' were also chosen by human evaluators **44-88%** of the time as the most pivotal moment in the reasoning process.

Thank you!

Code: https://github.com/sherdencooper/GPO