(a) Current alignment strategy.

Qiao Li¹, Jie Li², Yukang Zhang², Lei Tan³, Jing Chen¹, Jiayi Ji^{2,3}, School of Cyber Science and Engineering, Wuhan University, Wuhan, China School of Informatics, Xiamen University, Xiamen, China

³National University of Singapore, Singapore

NeurlPS | 2025

Motivation

(b) Our proposed Geometric and Semantic Alignment Network (GSAlign).

- ← Implicit Alignment → ← Geometric Alignment →
- (a) Previous methods rely solely on implicit alignment, which is insufficient to fully address spatial and semantic distortions.
- (b) In contrast, our GSAlign performs explicit alignment at both the geometric and semantic levels via LTPS and visibilityaware semantic masks, respectively. This design equips GSAlign with a stronger capability for robust aerial-ground matching.

Contribution

- (1) We propose GSAlign, a novel framework for aerial-ground person re-identification that jointly addresses geometric deformation and semantic misalignment within a unified architecture. GSAlign is specifically designed to handle the extreme cross-view variations and visibility inconsistencies inherent in UAV-to-ground matching scenarios.
- (2) We introduce a Learnable Thin Plate Spline (LTPS) Module and a Dynamic Alignment Module (DAM). LTPS performs keypoint-guided feature warping to compensate for severe spatial distortions, while DAM enhances semantic alignment by estimating visibility-semantic representation masks to highlight visible body regions and suppress noisy or occluded areas.
- (3) Extensive experiments on the challenging CARGO dataset validate the effectiveness of GSAlign, which achieves state-of-the-art performance with absolute gains of +18.8\% in mAP and +16.8\% in Rank-1 accuracy on the aerial-ground setting.

Protocol 1: ALL

The Proposed GSAlign **Dynamic Alignment Module** Semantic Mask Learnable Thin Plate Spline (LTPS) **Batch Features** Angle Predictor, **Rotation Point Batched Images**

GSAlign first applies an initial geometric transformation via a Learnable Thin Plate Spline (LTPS) module, followed by progressive alignment through LTPS blocks inserted before each ViT layer. In parallel, a Dynamic Alignment Module (DAM) generates a visibility-aware semantic mask according to the input image, which is then applied to the representations of other images in the batch to suppress irrelevant or occluded features.

Experiments

Method	Protocol 1: ALL			Protocol 2: G↔G				Protocol 3: A↔A				Protocol 4: A↔G			
	Rank1	mAP	mINP	Rank1	mAP	mINP	Rai	nk1	mAP	mINP	Rank1	mAP	mINP		
SBS [40]	50.32	43.09	29.76	72.31	62.99	48.24	67	.50	49.73	29.32	31.25	29.00	18.71		
PCB [17]	51.00	44.50	32.20	74.10	67.60	55.10	55	.00	44.60	27.00	34.40	30.40	20.10		
BoT [41]	54.81	46.49	32.40	77.68	66.47	51.34	65	.00	49.79	29.82	36.25	32.56	21.46		
MGN [42]	54.81	49.08	36.52	83.93	71.05	55.20	65	.00	52.96	36.78	31.87	33.47	24.64		
VV [43, 44]	45.83	38.84	39.57	72.31	62.99	48.24	67	.50	49.73	29.32	31.25	29.00	18.71		
AGW [39]	60.26	53.44	40.22	81.25	71.66	58.09	67	.50	56.48	40.40	43.57	40.90	29.39		
BAU [45]	45.20	38.40	-	61.60	51.20	-	50	.00	42.60	-	40.40	36.70	-		
PAT [46]	37.90	15.30	-	52.70	24.20	-	50	.00	23.10	-	35.10	15.50	-		
DTST [47]	64.42	55.73	41.92	78.57	72.40	62.10	80	.00	63.31	44.67	50.53	43.49	29.46		
ViT [37]	61.54	53.54	39.62	82.14	71.34	57.55	80	.00	64.47	47.07	43.13	40.11	28.20		
VDT [8]	64.10	55.20	41.13	82.14	71.59	58.39	82	.50	66.83	50.22	48.12	42.76	29.95		
GSAlign	65.06	57.95	44.97	83.04	73.86	62.73	80	.00	65.55	49.81	64.89	61.55	52.81		
			. 11 4		ъ.	10.0			. 12	A A	D : 14 4 . G				
Setting	Protocol				Proto		Protocol 3: A↔A			Protocol 4: A↔G					
		Rank1	mAP	mINP	Rank1	mAP n	nINP	Rank	1 mAl	P mINP	Rank1	mAP	mINP		
Baseline		64.10	55.20	41.13	82.14	71.59 5	8.39	82.50	0 66.8	3 50.22	48.12	42.76	29.95		
Baseline + LTPS		64.42	55.95	41.92	80.36	71.87 5	9.55	82.50	0 65.2	6 47.15	64.89	61.08	50.54		

Baseline + LTPS + DAM 65.06 57.95 44.97 83.04 73.86 62.73 80.00 65.55 49.81 64.89 61.55 52.81


Setung									_						
		Rank1	mAl	P mIN	NP	Rank1	mA)	P mINI	P	Rank1	mAP	mINP	Rank1	mAP	mINP
Different variant	ts of D)AM													
Inner-Batch		65.06	57.9	5 44.9	97	83.04	73.8	6 62.7 3	3	80.00	65.55	49.81	64.89	61.55	52.81
Memory Bank		65.38	57.3	4 44.0	09	83.04	73.7	2 62.05	5	80.00	62.70	43.88	63.83	61.06	52.52
Classification Matrix		63.14	55.6	4 42.0	07	81.25	72.0	4 59.53	3	75.00	63.79	79 48.06	57.45	57.45 56.55	47.33
Satting	F	Protocol 1: ALL		LL	Protocol 2: G			\leftrightarrow G	→G Proto		col 3: A↔A		Protocol 4: A		↔G
Setting	Ranl	k1 m	AP :	mINP	Ra	ınk1	mAP	mINP	R	Rank 1	mAP	mINP	Rank1	mAP	mINP
Different locatio	ns for	LTPS													
First layer	64.1	0 55	5.92	42.44	83	3.04	72.86	60.58	8	30.00	65.98	50.45	58.51	56.92	47.62
First 4 layers	64.1	0 56	5.46	43.50	81.25		74.49	64.70	8	30.00	64.45	47.11	58.51	56.21	46.66
Middle 4 layers	64.7	4 57	7.09	44.08	82	2.14	74.93	64.77	77.50		64.28	47.30	58.51	58.30	50.18
Last 4 layers	65. 0	06 57	7.39	44.05	14.05 83.		74.42	62.86	77.50		65.21	49.80	64.89	59.87	50.95
All layers	65.0	6 57	.95	44.97	83	3.04	73.86	62.73	8	30.00	65.55	49.81	64.89	61.55	52.81
Setting		Proto	ocol 1	: A↔	G	Prot	ocol 2	: G ↔A	П	Proto	col 3:	$A \leftrightarrow W$	Proto	col 4:	W↔A
		Rank		mAP		Ran		mAP	+	Rank		mAP	Rank		nAP
BoT [41]		85.4		77.03	_	84.6		75.90	\dashv	89.7		30.48	84.6		6.90
Explain [6]		87.7	0	79.00)	87.3	35	78.24		93.67		3.14	87.7	3 7	9.08
VDT [8]		86.4	6	79.13	86.		14	78.12		90.0	0 8	32.21	85.26	6 7	8.52
AG-ReIDv2 [16]		88.7	7	80.72	:	87.8	36	78.51		93.6	2 8	34.85	88.6	1 8	0.11
SeCap [49]		88.1	2	80.84	-	88.2	24	79.99		91.4	4 8	34.01	87.5	6 8	0.15
GSAlign		91.4	7	89.78	3	88.2	29	87.62		93.30	0 9	1.84	88.12	2 8	8.62

Protocol 2: $G \leftrightarrow G$

Protocol 3: $A \leftrightarrow A$

Protocol 4: $A \leftrightarrow G$

Visulization

The input image (red) exhibits significant geometric distortion due to extreme viewpoint variation. After applying the Learnable Thin Plate Spline (LTPS) transformation (green), the image is spatially rectified, highlighting improved geometric consistency and local structure alignment