

HOI-Dyn: Learning Interaction Dynamics for Human-Object Motion Diffusion

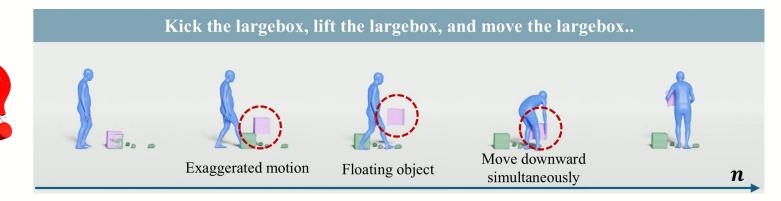
Lin Wu¹, Zhixiang Chen² and Jianglin Lan^{1*}

University of Glasgow
 University of Sheffield

Background

• Synthesizing complex and realistic 3D human-object interactions (HOIs) is essential for progress in computer animation, and robotics, yet remains a significant challenge.

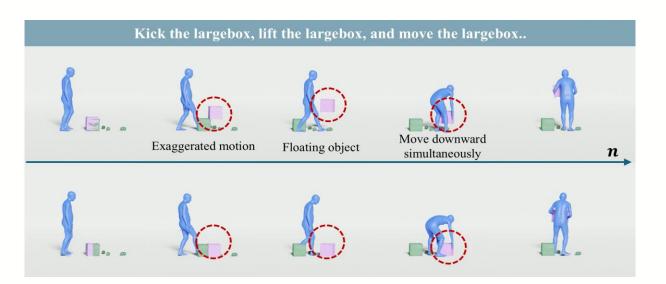
Jiaman Li et al. CHOIS ECCV 2024



Zhen Wu et al. HOI-HLI ICCV 2025

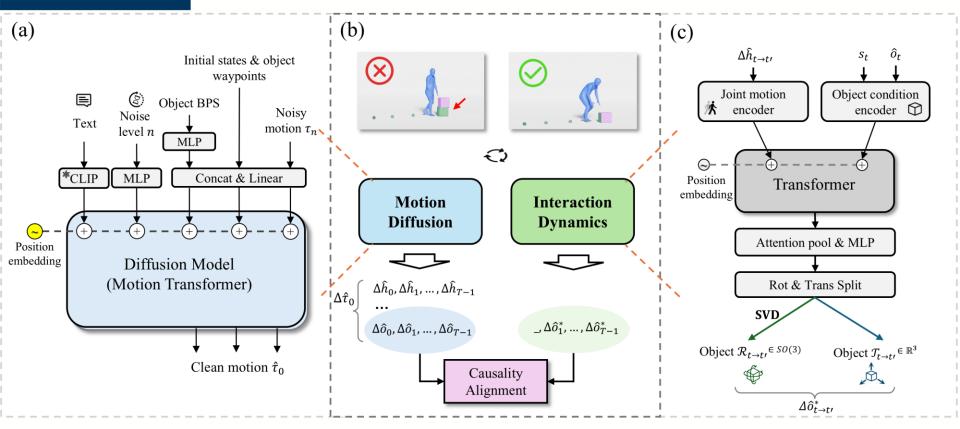
Challenges

- Directly applying generative models to HOI often leads to **decoupled motions**, resulting in physically unrealistic and causally inconsistent behaviours.
- In contrast, realistic HOI synthesis requires capturing interaction dynamics
 stable contact, forces, and action—response relationships.



Objective

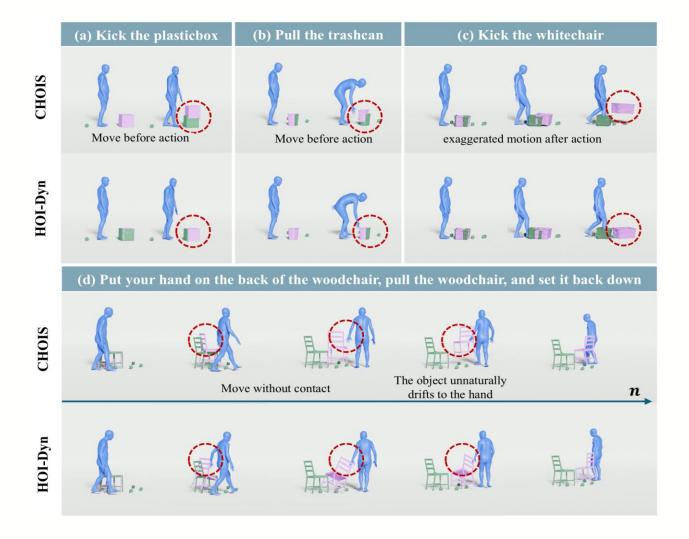
Our goal is to synthesize synchronized HOIs while maintaining internal causal consistency, by leveraging controllable signals such as text.


New perspective: Driver-Responder System

Motivated by classical synchronization control formulation, we frame HOI generation as a **driver-responder system**, where human actions serve as the driver and object respond accordingly.

better model the <u>causal dependencies</u> between human actions and object responses in a dynamic and physically consistent manner.

Proposed Framework: HOI-Dyn



Interaction Dynamics Guided Generation

Qualitative Results

HOI generation in **3D Scene**

Quantitative Results

Conducted on FullBodyManipulation Dataset

Table 1: Comparison of methods across different metrics. Arrows indicate whether lower (\downarrow) or higher (\uparrow) is better, and the same notation applies hereafter.

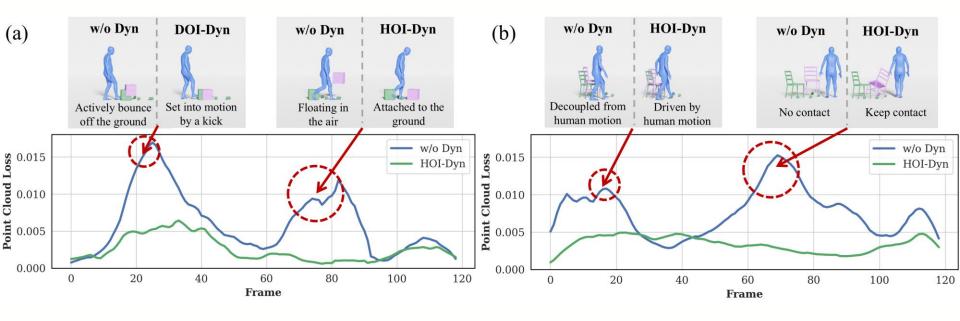
Method	Condition Matching			Human Motion			Interaction			GT Difference			
	$T_s \downarrow$	$T_e \downarrow$	$T_{xy}\downarrow$	$H_{ ext{feet}}\downarrow$	FS↓	FID↓	$C_{F1} \uparrow$	C % ↑	$P_{hand}\downarrow$	MPJPE↓	$T_{\mathrm{root}}\downarrow$	$T_{ m obj}\downarrow$	$R_{ m obj}\downarrow$
Interdiff	0.00	158.84	72.72	0.90	0.42	208.0	0.33	0.27	0.55	25.91	63.44	88.35	1.65
MDM	5.18	33.07	19.42	6.72	0.48	6.16	0.53	0.43	0.66	17.86	34.16	24.46	1.85
Lin-OMOMO	0.00	0.00	0.00	7.21	0.41	15.33	0.57	0.54	0.51	21.73	36.62	17.12	1.21
Pred-OMOMO	2.39	8.03	4.15	7.08	0.40	4.19	0.66	0.62	0.58	18.66	28.39	16.36	1.05
GT-OMOMO	0.00	0.00	0.00	7.10	0.41	5.69	0.67	0.59	0.55	15.82	24.75	0.00	0.00
CHOIS	2.10	6.16	3.03	3.39	0.41	0.87	0.66	0.54	0.61	16.01	24.33	14.29	0.99
HOI-Dyn (Ours)	1.75	5.58	3.26	3.07	0.37	0.48	0.71	0.60	0.64	15.60	23.90	12.47	0.90

***** better human motion fidelity and improved interaction quality.

Quantitative Results

Conducted on 3D-FUTURE Dataset

Table 2: Interaction synthesis results on the 3D-FUTURE dataset


Method	Cond	ition Mat	ching	Hun	nan Mo	Interaction		
	$T_s \downarrow$	$T_e \downarrow$	$T_{xy}\downarrow$	$H_{ ext{feet}}\downarrow$	FS↓	FID↓	C % ↑	$P_{hand}\downarrow$
InterDiff	0.00	161.26	72.77	-0.26	0.42	207.3	0.24	0.11
MDM	12.58	40.55	28.72	7.02	0.49	8.50	0.34	0.26
Lin-OMOMO	0.00	0.00	0.00	6.32	0.42	23.17	0.44	0.11
Pred-OMOMO	4.15	9.03	3.89	6.08	0.40	3.74	0.50	0.18
CHOIS	3.23	6.21	2.99	2.95	0.42	1.67	0.47	0.19
HOI-Dyn (Ours)	4.60	6.17	2.95	2.56	0.37	1.62	0.54	0.26

***** generalizes well to unseen objects on the 3DFUTURE dataset.

Dynamics as Causality Indicator

The interaction dynamics serves as a surrogate evaluator of causal consistency.

Conclusion & Future Work

- ☐ We propose a novel **driver-responder framework** that explicitly models object **Interaction Dynamics** and integrates with existing HOI motion diffusion techniques to achieve more realistic HOIs.
- ☐ Future Work: We also plan to explore the extension of our framework to handle multi-human and multi-object scenarios to assess scalability.

Thanks for your attention!

AIR Lab

Project Website

Paper

