

NSNQuant: A Double Normalization Approach for Calibration-Free Low-Bit Vector Quantization of KV Cache

Donghyun Son, Euntae Choi, Sungjoo Yoo

CMALab, Seoul National Univerity

Preliminary

Preliminary: KV cache

- In a transformer decoder architecture, key and value (KV) are cached to avoid redundant computations
- The size of KV cache increases linearly with the batch size and the sequence length.
- This leads to huge memory overhead and becomes the main bottleneck of LLM inference

Preliminary: Vector Quantization

- A group of values (vector) is quantized by mapping it into an integer index in a codebook
- example) quantize an 8-dimensional vector using a codebook of size 256.
 - log(256) = 8 bits are needed to compress a 8-dimensional vector.
 - o average bit width = 8 / 8 = 1

$$VQ(v) = \underset{i}{\operatorname{argmin}} D(v, \mathbb{C}[i])$$

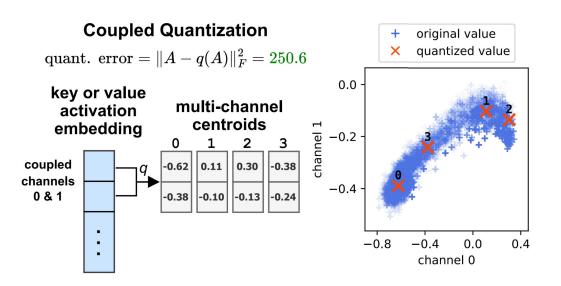
Preliminary: Hadamard transform

Hadamard matrix: recursively defined orthogonal matrix

$$\mathbf{H}_2=rac{1}{\sqrt{2}}\left[egin{array}{ccc} 1&1\ 1&-1 \end{array}
ight] \qquad ext{and} \qquad \mathbf{H}_{2^n}=\mathbf{H}_2\otimes \mathbf{H}_{2^{n-1}} \ .$$

Hadamard transform: Compute multiplication of the Hadamard matrix in O(n log n) complexity.

Known properties:


- suppress outliers
- yield gaussian-like outputs

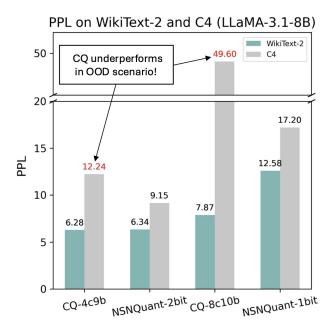
Motivation

Motivation 1: success of VQ in LLM quantization

- State-of-the-art methods in weight-only quantization: QuIP#, AQLM, VPTQ
- For KV cache: CQ (Coupled Quantization) applies VQ to KV Cache

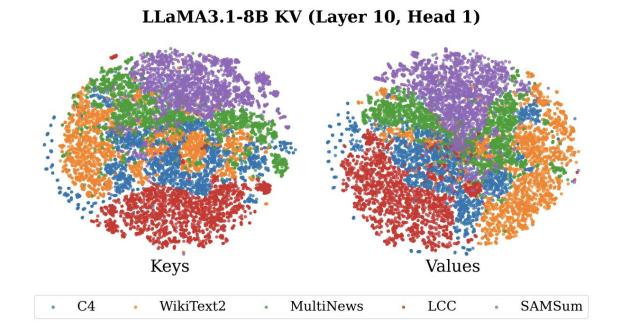
CQ (Coupled Quantization)

Idea: Generate a codebook to compress "coupled" channels.


use a small set of data, called calibration dataset to obtain KV distribution.

Motivation 2: failure of CQ in OOD (out-of-distribution) scenario

CQ builds codebooks using the calibration dataset (16 samples, WikiText-2)


Although it works well in an ID (in-distribution) scenario, it performs worse in

OOD scenarios.

Why CQ is susceptible to distribution shift

We find that the KV distribution relies heavily on the input distribution

Our approach: remove a calibration process from quantization

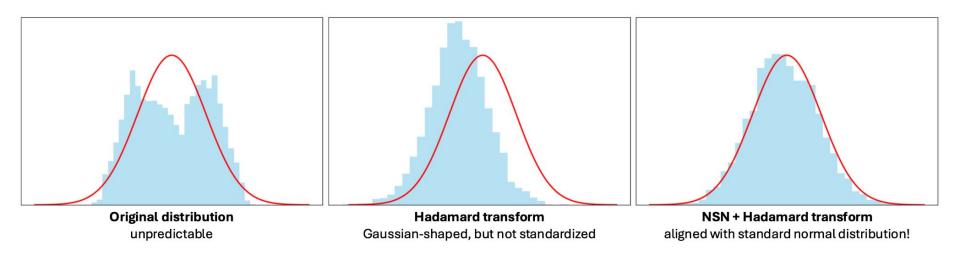
 CQ: build a codebook that fits well to KV distribution using a small set of data (calibration dataset)

- Ours (NSNQuant): align the KV distribution with a well-known prior (standard normal distribution) through the normalization
 - does not rely on any external data

Method

How to align KV distribution to a well-known prior?

- first idea: use Hadamard transform, which yields normal-like (gaussian-like) outputs
 - limitation: although the shape of the distribution is normal-like, its mean and variance are not controlled

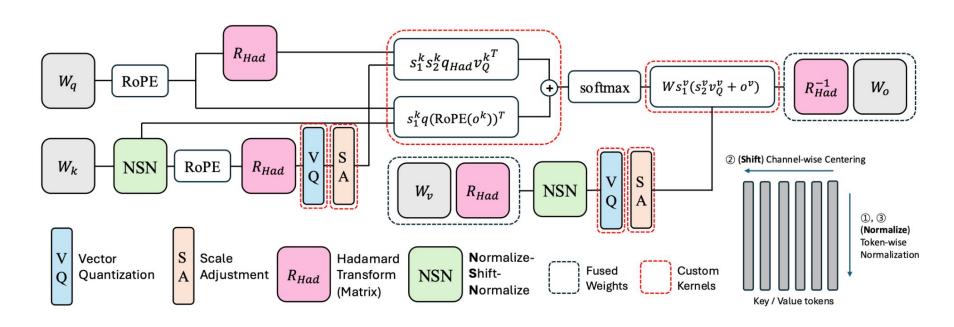

Our approach: 3-step normalization (NSN)

Hadamard transform: yields normal-like (gaussian-like) outputs

- NSN (Normalize-Shift-Normalize): standardize the outputs, when used with Hadamard transform.
 - (Normalize) token-wise normalization: scale each key/value of a token to have a scale of sqrt(d)
 - 2. (Shift) channel-wise centering: set mean of each channel to zero
 - 3. (Normalize) **token-wise normalization**: scale each key/value of a token to have a scale of sqrt(d)

Put together: output distribution is aligned with the standard normal distribution!

Visual illustration of effects of NSN



Codebook construction

- KV distribution is aligned with the standard normal distribution
 - we can build a single reusable codebook tailored for the standard normal data, using the synthetic data

Build a codebook using K-Means algorithm with further fine-tuning

NSNQuant: overall structure

A detailed explanation of attention computation and other components is provided in the paper

Experimental Results

PPL evaluation

Table 2: Perplexity on WikiText-2 and C4 with a context length of 4096. The results of CQ reported in the original paper are marked with †.

Method	Avg. bit width	Dataset	LLaMA2-7B	LLaMA2-13B	LLaMA3-8B	LLaMA3.1-8B	Mistral-7B-v0.3
FP16	16	C4 WikiText-2	6.63 5.12	6.04 4.57	8.32 5.75	8.43 5.84	7.48 4.95
KIVI-2	2.38	C4 WikiText-2	8.00 6.14	7.03 5.30	16.43 10.93	15.80 10.55	8.83 6.03
KIVI-2 + Had	2.38	C4 WikiText-2	7.57 5.79	6.68 5.05	12.67 8.69	12.54 8.86	8.43 5.65
KVQuant-2b + 1%	2.32	C4 WikiText-2	7.09 5.52	6.37 4.88	9.75 6.74	9.60 6.71	7.93 5.32
CQ-4c9b	2.26	C4 WikiText-2	7.12 (7.02^{\dagger}) 5.36 (5.32^{\dagger})	$6.45 \ (\underline{6.36^{\dagger}}) $ $4.76 \ (\underline{4.74^{\dagger}})$	13.97 6.16	12.24 6.28	7.86 5.16
NSNQuant-2b	2.23	C4 WikiText-2	6.86 5.29	6.21 4.71	9.08 6.23	9.15 6.34	7.69 5.12
KVQuant-1b + 1%	1.32	C4 WikiText-2	30.79 13.5	14.27 9.91	33.17 27.57	37.37 33.96	12.45 9.06
CQ-8c10b	1.27	C4 WikiText-2	9.25 (<u>9.12</u> [†]) 6.33 (6.25 [†])	8.17 (<u>8.01</u> [†]) 5.53 (5.47 [†])	43.78 7.69	49.60 7.87	9.60 6.01
NSNQuant-1b	1.23	C4 WikiText-2	8.70 6.69	7.55 5.70	16.69 11.70	17.20 <u>12.58</u>	9.67 6.66

LongBench evaluation

Table 3: Evaluation results on LongBench. The task subset is selected following KIVI [30]. More results with different models can be found in Table 16.

Model	Method	Bits	Qasper	OMSUM	MilliWews	TREC	TiviaOA	SAMSum	1cc	RepuBendhiP	Avg.
-	FP16	16	13.11	23.53	26.74	72.50	91.65	43.78	63.04	56.17	48.82
LLaMA3.1-8B-Instruct	KIVI-2 KIVI-2 + Had KVQuant-2b + 1% CQ-4c9b NSNQuant-2b KVQuant-1b + 1% CQ-8cb10 NSNQuant-1b	2.38 2.38 2.32 2.26 2.23 1.32 1.27 1.23	12.04 11.57 13.15 12.25 12.44 9.91 8.84 11.54	24.96 24.28 23.45 23.80 23.74 22.19 21.18 24.69	26.70 26.51 26.24 25.74 26.95 22.27 22.40 27.16	72.00 72.50 72.00 71.50 72.50 47.50 47.50 71.50	91.97 92.09 91.63 91.53 91.73 88.92 87.94 92.04	43.43 43.21 41.39 41.96 44.01 35.76 38.86 42.36	60.85 62.90 60.80 61.18 62.05 50.27 53.81 60.08	53.39 55.20 54.41 54.46 55.09 43.79 45.73 49.70	48.17 48.53 47.88 47.80 48.56 40.08 40.78 47.38
Mistral-7B-Instruct-v0.3	FP16 KIVI-2 KIVI-2 + Had KVQuant-2b + 1% CQ-4c9b NSNQuant-2b KVQuant-1b + 1% CQ-8c10b NSNQuant-1b	1.23 16 2.38 2.38 2.32 2.26 2.23 1.32 1.27 1.23	41.13 37.86 39.99 38.98 39.85 39.96 28.58 31.21 37.94	25.75 24.62 25.42 25.10 24.50 24.91 21.89 22.56 25.03	27.78 26.85 27.50 27.22 27.19 27.54 22.76 23.12 26.81	76.00 76.00 76.00 76.00 76.00 76.00 50.50 64.50 76.00	88.59 88.51 88.42 89.02 88.86 88.96 87.75 88.09 89.39	47.47 45.93 46.52 45.27 45.56 46.47 39.62 41.71 46.37	59.52 58.72 59.54 58.57 58.36 58.70 54.73 53.82 56.75	60.64 57.87 60.13 61.59 60.26 59.45 54.46 52.31 55.57	53.36 52.05 52.94 52.72 52.57 52.75 45.04 47.16 51.73

LM-eval results

Table 4: Evaluation results on GSM8K, HumanEval, CoQA, and MMLU. Accuracy is reported for all tasks. Results with LLaMA2-13B-Chat and LLaMA3-8B-Instruct can be found in Table 18

Model	Method	Bits	GSM8K (8-shot, CoT)	HumanEval	CoQA	MMLU (4-shot, CoT)			
1170001	Withing	Dis Obliton (o shot, co		Trainain var	Coqri	Humanities	STEM	Social	Other
	FP16	16	76.65	57.93	63.78	71.47	57.96	74.16	72.52
	KIVI-2	2.38	64.59	48.17	63.60	64.44	50.09	66.84	66.13
	KIVI-2 + Had	2.38	65.73	50.61	63.88	67.73	53.03	68.50	68.14
I I oMA2 1 9D Instruct	KVQuant-2b + 1%	2.32	70.05	<u>53.05</u>	62.37	68.18	<u>54.78</u>	<u>71.31</u>	69.61
LLaMA3.1-8B-Instruct	CQ-4c9b	2.26	72.93	48.78	62.93	67.07	52.66	70.22	69.33
	NSNQuant-2b	2.23	75.89	56.10	63.83	71.04	55.64	73.42	70.74
	KVQuant-1b + 1%	1.32	21.53	23.17	53.55	23.04	11.23	37.59	33.02
	CQ-8c10b	1.27	44.88	25.61	56.58	28.21	21.34	31.97	41.10
	NSNQuant-1b	1.23	53.45	44.51	62.70	59.82	45.83	65.34	63.77
Mistral-7B-Instruct-v0.3	FP16	16	53.15	31.10	65.58	65.98	50.46	71.06	68.26
	KIVI-2	2.38	43.75	28.66	64.45	60.96	39.93	63.52	59.05
	KIVI-2 + Had	2.38	46.10	28.05	65.48	63.28	45.11	66.99	63.07
	KVQuant-2b + 1%	2.32	46.63	27.44	64.28	63.00	45.47	67.39	66.27
	CQ-4c9b	2.26	47.84	31.10	64.80	62.48	42.48	68.73	63.98
	NSNQuant-2b	2.23	51.02	31.10	65.62	64.92	47.65	69.11	67.56
	KVQuant-1b + 1%	1.32	16.30	19.51	55.95	16.48	9.88	17.18	14.21
	CQ-8c10b	1.27	25.93	21.95	59.07	23.77	17.62	27.09	19.78
	NSNQuant-1b	1.23	38.89	27.44	63.60	58.52	40.34	62.34	58.43

Efficiency analysis

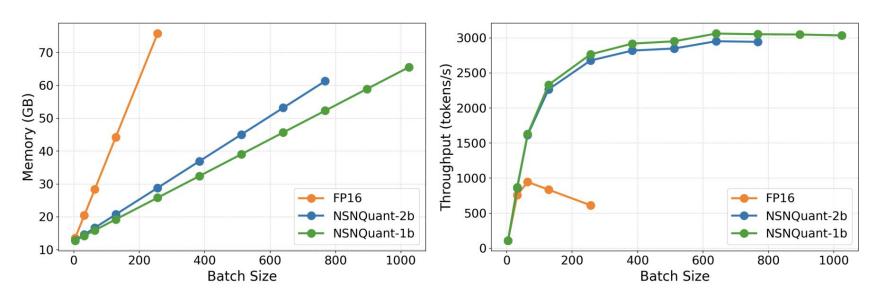


Figure 4: Peak memory usage (left) and throughput (right) measured with varying batch sizes. The residual size is set to 64. Results with varying residual sizes are available in Figure 8.

Thank you!

Donghyun Son, Euntae Choi, Sungjoo Yoo