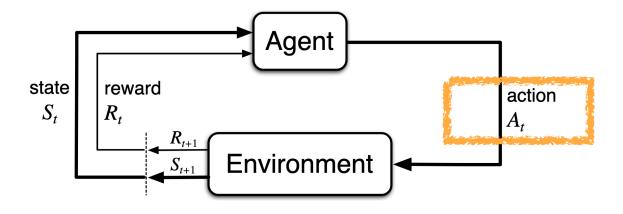
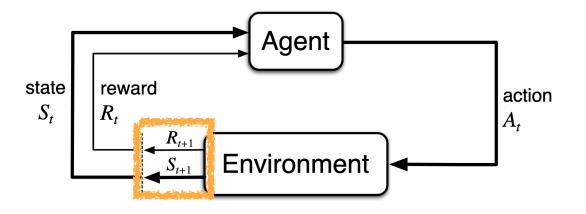
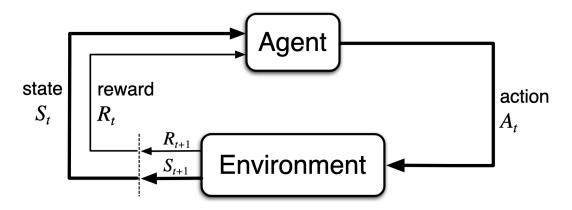

# Towards Provable Emergence of In-Context Reinforcement Learning


Jiuqi Wang, Rohan Chandra, Shangtong Zhang









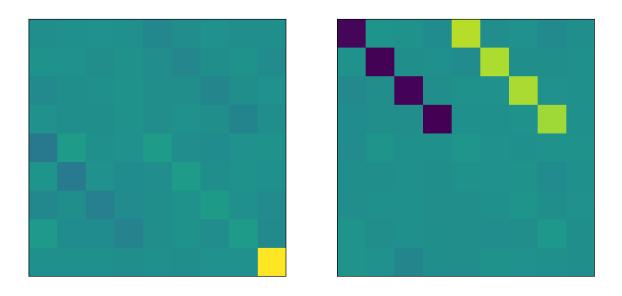



#### Policy Evaluation



The goal of the **policy evaluation** is to find the value function  $v_{\pi}: \mathcal{S} \to \mathbb{R}$  for  $\pi$ , defined as

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi} \left[ \sum_{t=0}^{\infty} \gamma^t R_{t+1} \middle| S_0 = s \right]$$
, where  $\gamma$  is a discount factor.


#### Transformers Can Perform Policy Evaluation In-Context



#### Multi-Task Training Gives Rise to In-Context Policy Evaluation

- Let  $TF_{\theta}\left(s_q;C\right)$  be the output of the Transformer parameterized by  $\theta$ , given query state  $s_q$ , and conditioned on context C.
- Multi-task TD training updates  $\theta$  as  $\theta \leftarrow (r(s) + \gamma TF_{\theta}(s'; C) TF_{\theta}(s; C)) \nabla TF_{\theta}(s; C)$ .
- The update is simply the regular semi-gradient temporal difference update with an additional context in the input.

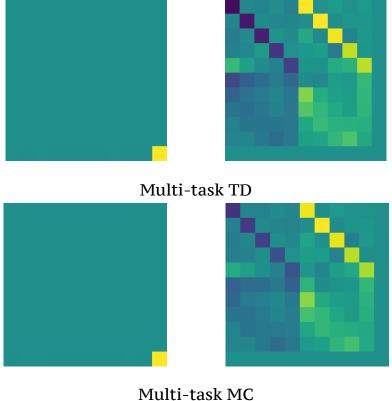
#### Multi-Task Training Gives Rise to In-Context Policy Evaluation



These Transformer parameters enable in-context policy evaluation!

# the parameters that enable ICTD?

Why do multi-task training give rise to


#### (Our Contribution) ICTD Parameters Minimize the NEU Loss!

- Let  $\theta^{TD}$  denote the parameters that enable ICTD.
- The expected update of multi-task TD is  $\Delta^{TD}(\theta) \doteq \mathbb{E}\left[ (r(S) + \gamma TF_{\theta}(S';C) TF_{\theta}(S;C)) \nabla TF_{\theta}(S;C) \right]$
- We proved that  $\theta^{TD}$  is a **global minimizer** of the **norm of expected update** (NEU) loss, defined as  $J(\theta) \doteq \left\| \Delta^{TD}(\theta) \, \right\|_1$ .

(Our Contribution) Multi-Task Monte Carlo Also Gives Rise to ICTD Parameters!

- Keeping everything else unchanged, **multi-task MC** training updates  $\theta$  as
- $\theta \leftarrow (G(s) TF_{\theta}(s; C)) \nabla TF_{\theta}(s; C)$ , where G(s) is a return unrolled from s. •  $\theta^{TD}$  emerges from multi-task MC training as well!

#### (Our Contribution) Multi-Task Monte Carlo Also Gives Rise to ICTD Parameters!



### Thank you!