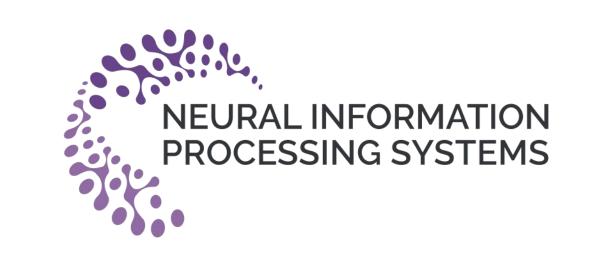


FedQS: Optimizing Gradient and Model Aggregation for Semi-Asynchronous Federated Learning



Yunbo Li¹, Jiaping Gui¹, Zhihang Deng¹, Fanchao Meng¹, Yue Wu¹ ¹Shanghai Jiao Tong University

Model Gap (%)

0.12

0.22

0.50

Aggregation Aggregation

 $\left| f_i^t < \overline{f}^t \otimes s_i^t < s_\perp^t \right| f_i^t > \overline{f}^t \otimes s_i^t < s_\perp^t$

82.63

87.29

71.11

Background

Semi-Asynchronous Federated Learning:

- SAFL sits between synchronous and fully asynchronous FL, balancing training delay, stability, and efficiency.
- Two dominant aggregation modes:
 - **Gradient aggregation** (FedSGD): fast convergence but oscillatory.
 - Model aggregation (FedAvg): more stable but slower and sub-optimal.

Challenge:

- Lack of theoretical guidance:
 - existing work mostly empirical
- Inherent Aggregation Disparity:
 - Gradients: continuous in loss space.
 - Models: stale and interrupted.
- Server- or Client-Centric Limitations:
 - Server-centric: one-sided aggregation.
 - Client-centric: insufficient global information

Q: How to jointly stabilize gradient aggregation and accelerate model aggregation under SAFL while guaranteeing convergence?

Analysis

Key Factors Affecting Aggregation Gap

- **Staleness (Factor 1):**
- Gradient aggregation:
 - Continuous but unstable updates.
- Model aggregation:
- - Reset optimization path.
- Data Heterogeneity (Factor 2):
- Frequent clients dominate, causing bias & overfitting.

Theoretical Insights

FedQS under **gradient aggregation**:

$$\mathbb{E}[F(w_g^t)] - F^* \le L\mathcal{V}^t \mathbb{E}[||w_g^0 - w^*||^2] + \mathcal{U} + \mathcal{W}$$

FedQS-SGD adds momentum to improve convergence stability.

FedQS under **model aggregation**:

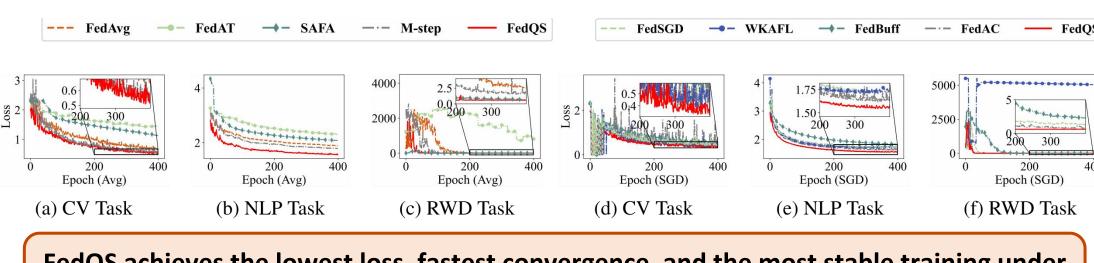
$$\mathbb{E}[F(w_g^t)] - F^* \le (3LpK^2 + L)\mathcal{V}^t \mathbb{E}[||w_g^0 - w^*||^2] + \mathcal{U} + \mathcal{W}$$

FedQS-Avg uses feedback mechanism to address suboptimal convergence.

- Term $\mathcal{V}^t \in (0,1)$: exponentially decaying and guaranteeing convergence.
- Term $\mathcal{U} = \mathcal{O}(\delta^2)$: highlighting the impact of data heterogeneity.
- Term $\mathcal{W} = \mathcal{O}(G_c^2)$: capturing gradient norm effects.

Evaluation

Overall Performance:

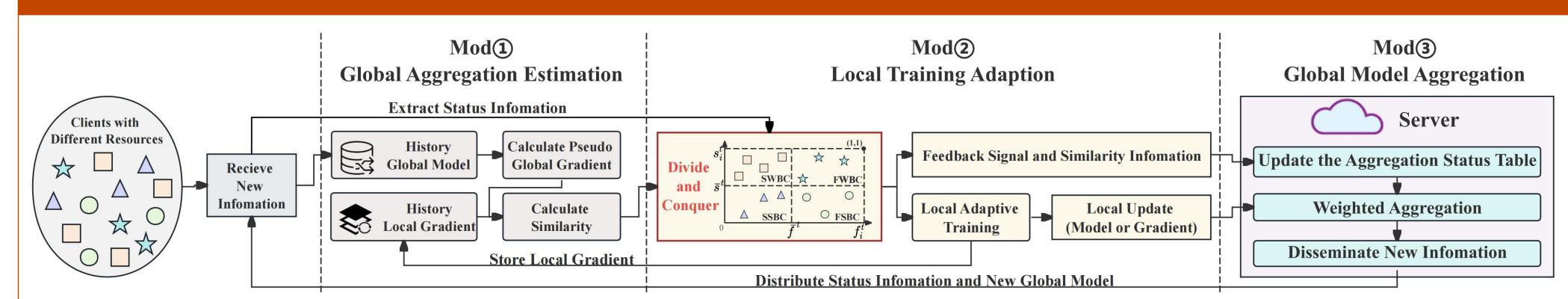


FedQS achieves the lowest loss, fastest convergence, and the most stable training under both gradient- and model-aggregation strategies.

Scalability & Robustness:

ocalability a mobastilessi											
Scenario 1:	Dynamic	Algorithm	x=0.1			x=0.5			x=1		
	Scenario		Accuracy (%)	Conv. Speed	Runtime (s)	Accuracy (%)	Conv. Speed	Runtime (s)	Accuracy (%)	Conv. Speed	Runtime (s)
Dynamic Resource	Scenario 1	FedAvg	52.77	322	46488	77.29	288	47732	76.79	227	48003
Scale.		FedQS-Avg		264	53986	82.90	235	54575	83.22	201	55529
Scale.		FedSGD	68.29	244	47443	85.66	211	47728	87.86	147	48280
Scenario 2:		FedQS-SGD		206	54095	88.12	177	55268	88.80	115	55257
Scenario 2.	Scenario 2	FedAvg	53.12	310	47397 55535	76.74	294 241	47156 55916	79.90	286	47788 56253
Unstable Resource		FedQS-Avg FedSGD	64.52 65.13	268 268	55535 47613	83.53 85.37	207	55816 47096	84.35 88.63	252 159	56253 47634
Offstable Resource		FedQS-SGD	1	223	55037	87.96	185	55201	89.14	133	55808
per Client.	Scenario 3	FedAvg	44.39	343	58993	68.44	332	59362	72.47	296	59447
•		FedQS-Avg	53.22	297	62623	79.33	272	63308	81.08	253	63776
Scenario 3: Client		FedSGD	58.40	292	58345	81.73	288	59487	84.43	262	59732
		FedQS-SGD	60.08	263	62870	83.39	245	63992	86.18	241	64703
Dropout.											

Methodology



Overview of FedQS:

- **Mod** ① (Global Aggregation Estimation):
 - Compute pseudo global gradient: $L_g(w_g^t) = w_g^t w_g^{t-1}$.
- **Mod 2** (Local Training Adaption):
 - Divide clients into four types based on (f_i^t, s_i^t) .
- Mod ③ (Global Model Aggregation):
 - Aggregate after receiving K updates with adaptive weight. $p_i \propto \frac{n_i}{n} \text{ or } \frac{exp(\phi - F)}{2^{\phi - F}} \cdot \frac{(1 + \mathcal{G})^2}{K}$

Divide and Conquer Strategy:

- Fast-and-Weakly-Biased:
 - Frequent, mild drift -> Decrease LR + momentum
- **Fast-but-Strongly-Biased:**
 - Frequent, strong drift -> Fixed LR + feedback weighting
- **Straggling-but-Weakly-Biased:**
 - Rare, mild drift -> Increase LR + momentum

Straggling-and-Strongly-Biased:

Rare, strong drift -> Adaptively switch: momentum vs. feedback weighting

Key Takeaways

- Bridges the gap between gradient and model aggregation in Semi-Asynchronous Federated Learning through a theoretically governed design.
- Ultilize Divide-and-Conquer strategy to enhances training stability, accuracy, and speed under resource and data heterogeneity.
- Demonstrates strong scalability and robustness under fluctuating resources and client dropouts.

More **Details** of the Paper:

Contact:

Yunbo Li: li-yun-bo@sjtu.edu.cn Jiaping Gui: jgui@sjtu.edu.cn

Zhihang Deng: dzh1227@sjtu.edu.cn

Fanchao Meng: mactavishmeng@sjtu.edu.cn

Yue Wu: wuyue@sjtu.edu.cn