
ReCon-GS: Continuum-Preserved Gaussian Streaming for Fast and Compact Reconstruction of Dynamic Scenes

(NeurIPS 2025 Poster)

Jiaye Fu, Qiankun Gao, Chengxiang Wen, Yanmin Wu, Siwei Ma, Jiaqi Zhang*, Jian Zhang*

Background

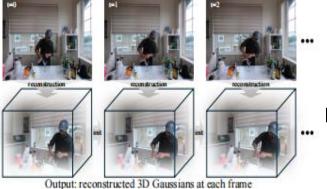
Offline Reconstruction

Input: complete video

* The video duration needs to be fixed.

X The complete video must be input at once.

X The relative parameters of the recording device need to be fixed.



Reconstructed All at Once

Input: sequential frames

Reconstruction

Online

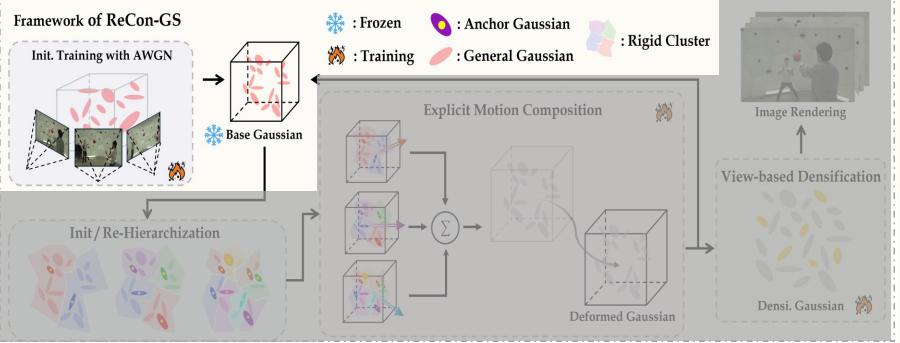
Good Practicality

★ Large-scale motion capture issues

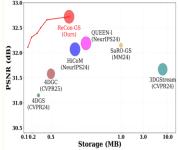
X Error accumulation problems

★ Single optimization objective limitations

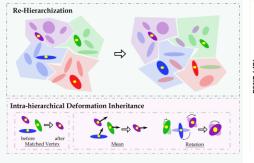
Reconstructed Frame by Frame

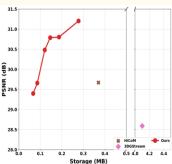

Contribution

- We propose **Adaptive Hierarchical Motion Representation**, an anchor-driven multi-scale motion encoding paradigm, achieving an efficient yet compact motion representation. (Large-scale motion capture issues)
- ☐ We design a **Dynamic Hierarchy Reconfiguration strategy** to address *anchor drift-induced motion degradation*. (Error accumulation problems)
- By adjusting the density of Anchor Gaussians, ReCon-GS dynamically balances storage and rendering quality. (Single optimization objective limitations)
- ☐ Extensive experiments validate **ReCon-GS's superiority** over current SOTA streaming method.

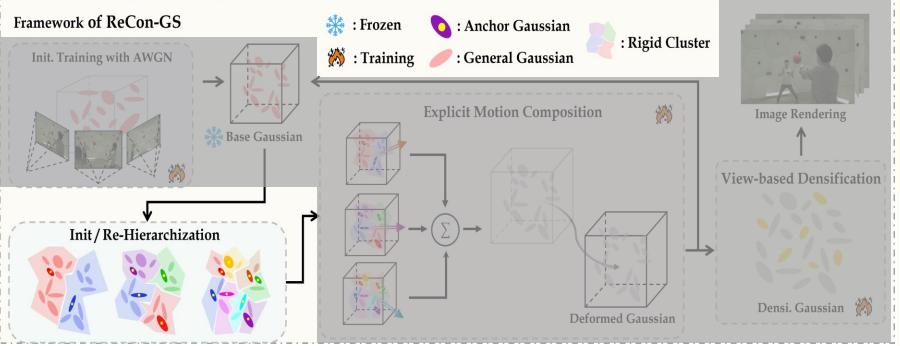


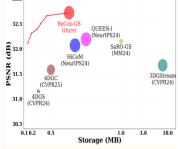
1. Using 3DGS generate base Gaussian with AWGN injection


2. Through a carefully designed grid-based FPS algorithm, the base Gaussians are divided into multi-level Anchor Gaussians, which represent motion, and General Gaussians.

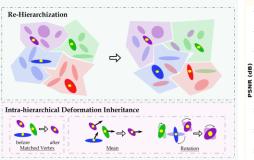


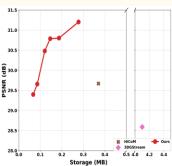
6. By allowing customization of the number of Anchor Gaussians, ReCongustion GS enables a 4D reconstruction paradigm with variable storage


- 3. By leveraging the explicit motion representation of Anchor Gaussians, ReCon-GS enables a quasi-rigid, frame-by-frame motion representation of objects, thus providing a compact motion expression.
- 4. Through a viewpoint-based densification process, it optimizes high-frequency regions with a focus on quality enhancement.
- 5. For specific frame intervals, ReCon-GS redistributes the Anchor Gaussians to optimize the inter-frame motion representation.

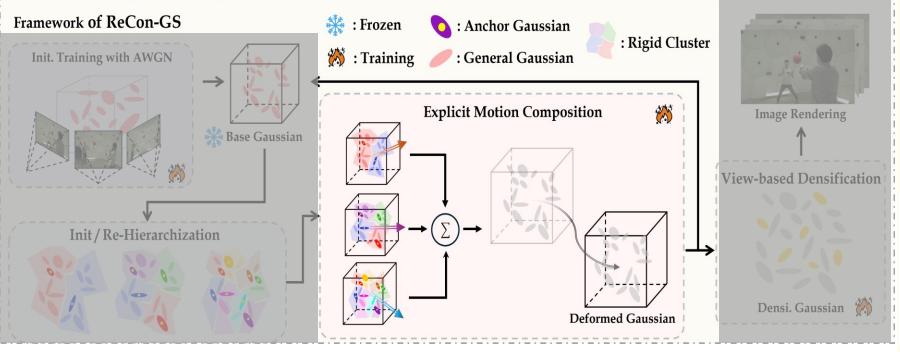


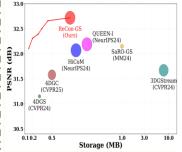
1. Using 3DGS generate base Gaussian with AWGN injection


2. Through a carefully designed grid-based FPS algorithm, the base Gaussians are divided into multi-level Anchor Gaussians, which represent motion, and General Gaussians.

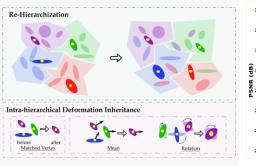


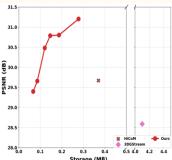
6. By allowing customization of the number of Anchor Gaussians, ReConfess a 4D reconstruction paradigm with variable storage


- 3. By leveraging the explicit motion representation of Anchor Gaussians, ReCon-GS enables a quasi-rigid, frame-by-frame motion representation of objects, thus providing a compact motion expression.
- 4. Through a viewpoint-based densification process, it optimizes high-frequency regions with a focus on quality enhancement.
- 5. For specific frame intervals, ReCon-GS redistributes the Anchor Gaussians to optimize the inter-frame motion representation.

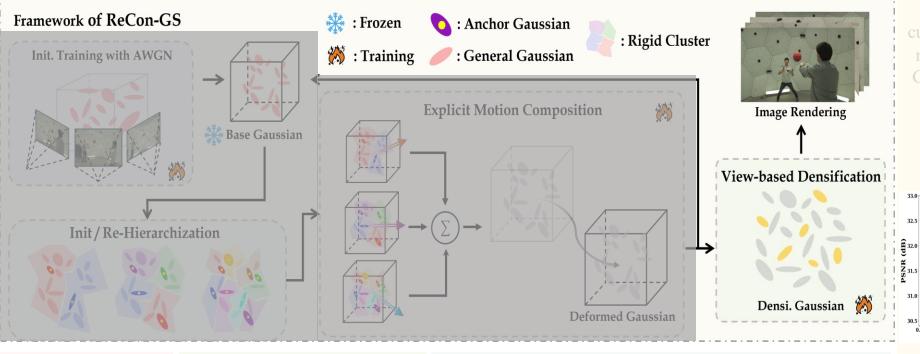


1. Using 3DGS generate base Gaussian with AWGN injection

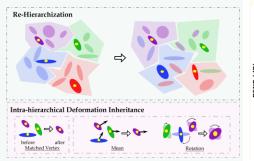

2. Through a carefully designed grid-based FPS algorithm, the base Gaussians are divided into multi-level Anchor Gaussians, which represent motion, and General Gaussians.

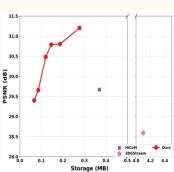


6. By allowing customization of the number of Anchor Gaussians, ReCongaussians, ReCongaussians at 4D reconstruction paradigm with variable storage


- 3. By leveraging the explicit motion representation of Anchor Gaussians, ReCon-GS enables a quasi-rigid, frame-by-frame motion representation of objects, thus providing a compact motion expression.
- 4. Through a viewpoint-based densification process, it optimizes high-frequency regions with a focus on quality enhancement.
- 5. For specific frame intervals, ReCon-GS redistributes the Anchor Gaussians to optimize the inter-frame motion representation.

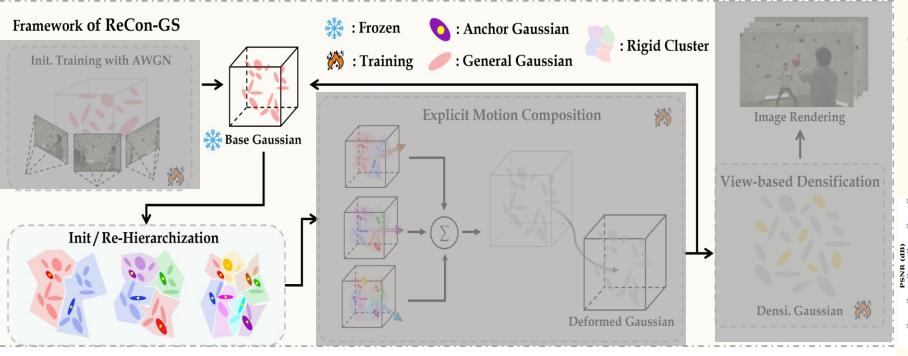
1. Using 3DGS generate base Gaussian with AWGN injection


2. Through a carefully designed grid-based FPS algorithm, the base Gaussians are divided into multi-level Anchor Gaussians, which represent motion, and General Gaussians.

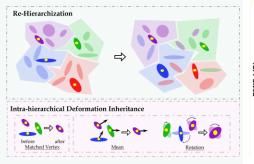


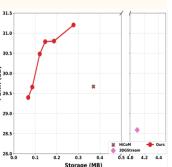
3. By leveraging the explicit motion representation of Anchor Gaussians, ReCon-GS enables a quasi-rigid, frame-by-frame motion representation of objects, thus providing a compact motion expression.

4. Through a viewpoint-based densification process, it optimizes high-frequency regions with a focus on quality enhancement.


5. For specific frame intervals, ReCon-GS redistributes the Anchor Gaussians to optimize the inter-frame motion

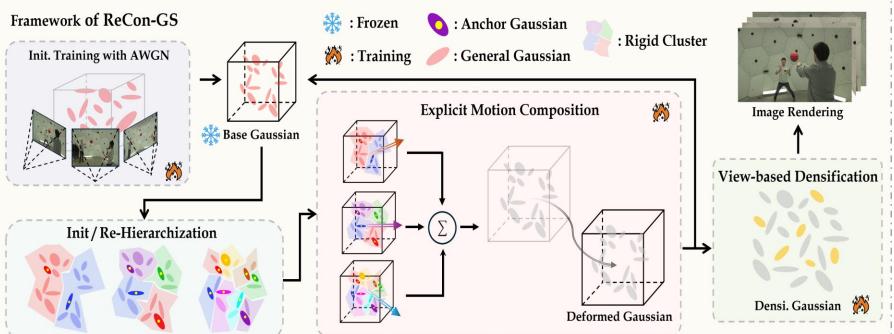
1. Using 3DGS generate base Gaussian with AWGN injection

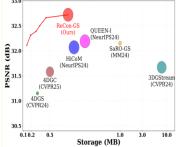

2. Through a carefully designed grid-based FPS algorithm, the base Gaussians are divided into multi-level Anchor Gaussians, which represent motion, and General Gaussians.



3. By leveraging the explicit motion representation of Anchor Gaussians, ReCon-GS enables a quasi-rigid, frame-by-frame motion representation of objects, thus providing a compact motion expression.

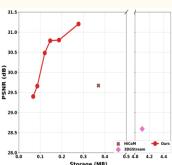
4. Through a viewpoint-based densification process, it optimizes high-frequency regions with a focus on quality enhancement.


5. For specific frame intervals, ReCon-GS redistributes the Anchor Gaussians to optimize the inter-frame motion representation.



1. Using 3DGS generate base Gaussian with AWGN injection

2. Through a carefully designed grid-based FPS algorithm, the base Gaussians are divided into multi-level Anchor Gaussians, which represent motion, and General Gaussians.



6. By allowing customization of the density of Anchor Gaussians, ReCon-GS enables a 4D reconstruction paradigm with variable storage

- By leveraging the explicit motion representation of Anchor Gaussians,
 ReCon-GS enables a quasi-rigid, frame-byframe motion representation of objects, thus providing a compact motion expression.
- 4. Through a viewpoint-based densification process, it optimizes high-frequency regions with a focus on quality enhancement.
- 5. For specific frame intervals, ReCon-GS redistributes the Anchor Gaussians to optimize the inter-frame motion representation.

Quantitative Results #1

□ ReCon-GS achieves state-of-the-art (SOTA) performance on four commonly used datasets.

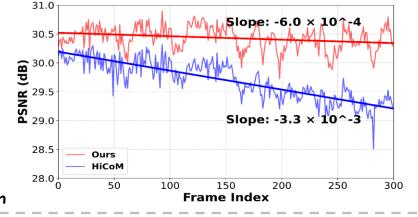
Category Method		PSNR (dB)↑	SSIM↑	LPIPS↓	Storage (MB)↓	Train (sec)↓	Render (FPS)↑
	4DGS [†] [<u>1</u>]	31.36	0.950	0.131	0.3	7.8	30
Offline	STG [9]	32.05	0.948	-	0.67	20	140
	SaRO-GS [5]	32.15	-	-	1.0	-	40
	Swift4D [46]	32.23	-	-	0.4	5.0	125
	SplineGS [47]	32.60	-	-	-	11	76
Online	Dynamic 3DGS [42]	30.67	-	-	-/9.2	560	-
	StreamRF [48]	30.68	0.930	-	17.7/31.5	15	12
	3DGStream [†] [6]	31.35	0.948	0.130	7.6/7.8	8.1	245
	4DGC [2]	31.58	0.943	-	-/0.5	50	168
	QUEEN-1 [4]	32.19	0.946	0.136	-/0.75	7.9	248
	HiCoM [†] [3]	32.08	0.953	0.130	0.48/0.69	6.6	255
	ReCon-GS (ours)	32.66	0.957	0.123	0.40/0.44	6.4	250

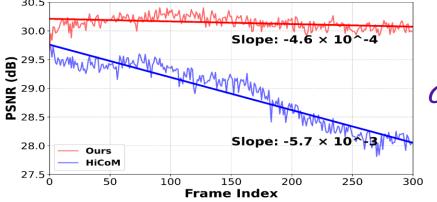
Category	Method	PSNR (dB)↑	SSIM↑	Storage (MB)↓	Render (FPS)↑
NeRF-based	HyperReel [49]	31.80	0.906	1.20	4
Offline	STG [9]	33.60	-	1.10	87
	Ex4DGS [34]	33.62	0.916	2.81	72
Online	E-D3DGS [50]	33.24	0.907	1.54	79
	ReCon-GS (ours)	33.83	0.932	0.82	207

Quantitative Results on Technicolor dataset

Quantitative Results on N3DV dataset

	Meet Room				PanopticSports			
Method	PSNR (dB)†	Storage (MB)↓	Train (sec)↓	Render (FPS)†	PSNR (dB)†	Storage (MB)↓	Train (sec)↓	Render (FPS)†
3DGStream [†] [6]	29.30	4.0/4.1	4.77	260	23.02	7.9/8.1	5.87	369
IGS-1* [12]	30.13	1.26	2.67	252	-	-	-	-
HiCoM [†] [3]	29.57	0.30/0.39	3.91	236	29.17	1.33/2.11	8.60	358
Ours	30.84	0.28/0.30	3.86	256	29.33	0.64/0.8	7.14	410

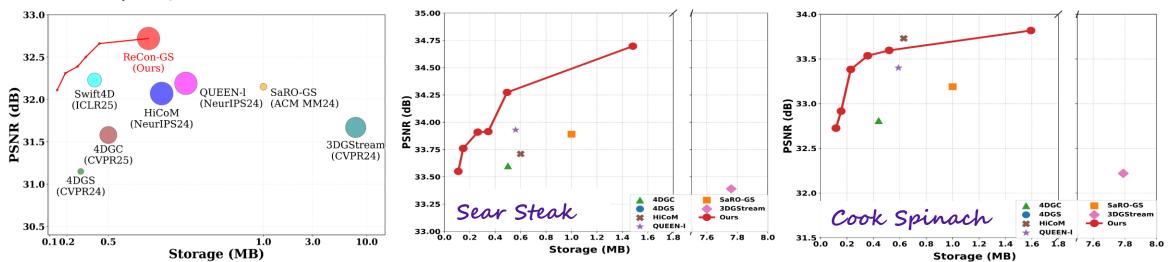

Quantitative Results on Meet Room and PanopticSports datasets



Quantitative Result #2

ReCon-GS effectively tackles the error accumulation issue. Additionally, it can adaptively adjust its storage footprint based on user requirements.

Flame Salmon



Coffee Martini

11

Anti-Error Accumulation

Rate-Distortion Performance

Qualitative Results #1

Compared to current state-of-the-art methods, ReCon-GS more effectively enhances its perceptual quality.

Qualitative Results #2

□ Compared to current state-of-the-art methods, ReCon-GS more effectively mitigates flickering artifacts in 3DGS.

Qualitative Results #2

☐ Thank you!

Paper:

Code:

