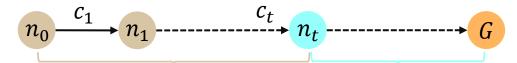


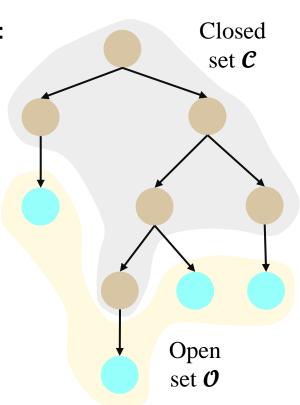
KeeA*: Epistemic Exploratory A* Search via Knowledge Calibration

Dengwei Zhao, Shikui Tu, Yanan Sun, Lei Xu

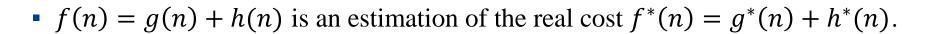
October 2025



History of A* Search


Bertram Raphael^[1].

- A* search algorithm is first published in 1968 by Peter Hart, Nils Nilsson and
- A^* search maintains an open set \mathcal{O} and a closed set \mathcal{C} :
 - Select the node n with minimum f value from \mathcal{O} .
 - Move n from \mathcal{O} to \mathcal{C} , and put children of n into \mathcal{O} .
- For a node n_t , f(n) is the summation of:
 - g(n): accumulated cost from n_0 to n_t .
 - h(n): expected cost from n_t to the goal.



g(n) computes the cost from the known searching trajectory.

h(n) is a heuristic function to estimate the cost of the future path.

Optimality of A* Search

• $g(n) = g^*(n)$ because g(n) is calculated from the known trajectory.

• Admissible assumption: heuristic function never overestimate the real cost, i.e., $h(n) \le h^*(n) \Rightarrow A^*$ is guaranteed to find the optimal solution.

• The efficiency of A^* search is highly influenced by the accuracy of the estimation of h(n), even if the optimality is guaranteed.

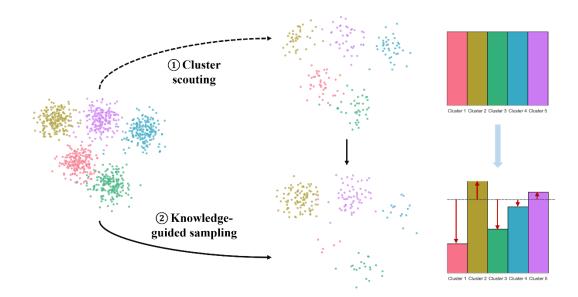
SeeA* search algorithm

- SeeA* is proposed by introducing exploration into the best first A* search.
 - Sample a candidate subset \mathcal{D} from the open set \mathcal{O} .
 - Select the node n with the lowest f-value from the candidate set \mathcal{D} .
- Various sampling strategies are employed.
 - Uniform sampling: K nodes are randomly selected from the open nodes as \mathcal{D} .
 - Clustering sampling: partition open nodes into multiple clusters and sampling nodes from each cluster evenly.
- Both theoretical analysis and experiment results have demonstrated the effectiveness of SeeA* compared to A*, when heuristic is biased.

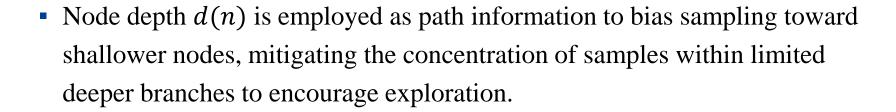
KeeA* search

- Building on SeeA*, KeeA* is proposed:
 - We theoretically demonstrate the advantage of cluster sampling in finding near-optimal solutions, compared to uniform sampling. The candidate set \mathcal{D} constructed by cluster sampling is closer to the optimal solution compared to uniform sampling, exhibiting a larger expected extreme value of f^* :

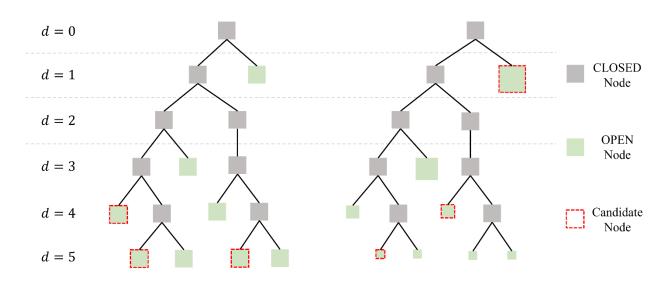
$$E_{\mathcal{D}_{cluster}}[M] > E_{\mathcal{D}_{uniform}}[M]$$


• Cluster scouting and path-aware sampling are introduced by KeeA* to enhance the quality of the sampled candidate set by injecting epistemic knowledge into the sampling.

Cluster Scouting



- Theoretical analysis illustrates that the probability $P(f^*(n_1) > f^*(n_2))$ is a monotonic function of the difference $f(n_1) f(n_2)$.
- Step *a*: An equal number of nodes are sampled from each cluster to evaluate the quality of each cluster.
- Step *b*: Nodes are sampled from clusters in proportion to their quality.



Path Aware Sampling

$$p_i(n) = \beta \times \frac{\exp d(n)}{\sum_{j=1}^{N_i} \exp d(n_j)} + (1 - \beta) \times \frac{1}{N_i}$$

Experiments

- Two real word applications are considered:
 - Retrosynthetic planning in organic chemistry: identify a series of chemical reactions that can utilize available molecules to generate the target molecule.
 - Logic synthesis in integrated circuit design: optimize the and-inverter logic graph to have the lowest area-delay product (ADP) through a sequence of functionality-preserving transform.

Results on Retrosynthetic Planning

Algorithm	Solved (%) ↑	Avg Length ↓	Algorithm	Avg reduction ↑
Retro*	54.66	16.58	DRiLLS	14.8
Retro*+	59.93	15.44	MCTS	18.5
MCTS	59.20	15.91	ABC-RL	20.9
A^*	58.73	15.78	A^*	19.5
LevinTS	61.01	15.74	PV-MCTS	19.5
PHS	56.16	16.51	PHS	15.9
SeeA*(Uniform)	62.97	14.85	SeeA*(Uniform)	21.6
SeeA*(Cluster)	63.56	14.31	SeeA*(Cluster)	23.5
KeeA* w/o CS	63.74	14.16	KeeA* w/o CS	24.0
KeeA*	63.76	14.14	$KeeA^*$	25.2

Tab 1. Test results on the seven benchmark for retrosynthetic planning

Tab 2. Test results on the MCNC benchmark for Logic synthesis

Summary

- In this paper, KeeA* search is proposed:
 - We first theoretically demonstrate the superiority of cluster sampling over uniform sampling within the SeeA* framework.
 - Cluster scouting and path-aware sampling is proposed by KeeA* to exploit node distributional knowledge for epistemic calibration, enhancing the mean and variance of sampled candidate nodes, respectively.
 - Extensive empirical experiments across thousands of test instances and statistical hypothesis testing results validate the effectiveness and robustness of KeeA*.

Code: https://github.com/CMACH 508/KeeA

