Sharp Gaussian Approximations for Decentralized Federated Learning

Soham Bonnerjee¹ Sayar Karmakar² Wei Biao Wu¹

¹University of Chicago; ²University of Florida

Introduction: DFL & local SGD

- Setting. K clients to jointly solve $\theta^* = \arg\min_{\theta} \sum_{k=1}^K w_k F_k(\theta)$. Can we apply SGD?
- Local SGD: K is large. Sharing of local gradients only happens periodically.
- Decentralized Learning: Clients may not share local gradients with everybody else. Instead sharing happens through connection matrix C.
- · Let $\Theta_t = (\theta_t^1, \dots, \theta_t^K) \in \mathbb{R}^{d \times K}$ be client-wise iterates.

Two statistical targets:

- Inference for PR-averaged iterate $\bar{Y}_n := K^{-1} \sum_{k=1}^K n^{-1} \sum_{t=1}^n \theta_t^k$.
- · Inference for Entire trajectory.

Why? and what's new?

- **Known**: Convergence rates, central limit theory.
- Key practical goals:
 - 1. Finite sample results + Multiplier Bootstrap-based inference without needing to estimate asymptotic covariance.
 - 2. Attack detection by establishing control over entire local SGD trajectory.

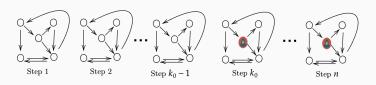


Figure 1: client(s) may turn malicious at some step.

Goal: identification of this step as well as the malicious client

Key Result 1: Berry Esseen

To enable Bootstrap, we require control over

$$d_{\mathcal{C}}(\sqrt{n}(\bar{Y}_{n} - \theta_{K}^{\star}), Z) := \sup_{A \text{ convex}} \big| \mathbb{P}(\sqrt{n}(\bar{Y}_{n} - \theta_{K}^{\star}) \in A) - \mathbb{P}(Z \in A) \big|.$$

We provide the first Berry-Esseen for local SGD. Step size $\eta_t = \eta t^{-\beta}$.

Berry-Esseen (PR-averaged). Under standard strong convexity/smoothness and graph assumptions,

$$d_{\mathcal{C}}(\sqrt{n}(\overline{Y}_n - \theta_K^{\star}), Z) \lesssim \frac{1}{\sqrt{n}K} + n^{\frac{1}{2} - \beta}\sqrt{K} + \frac{n^{-\frac{\beta}{2}}}{\sqrt{K}},$$

for a suitable Gaussian Z with covariance Σ_n (finite-sample scaling).

4

Key Result 1: Berry Esseen

Berry-Esseen (PR-averaged). Under standard strong convexity/smoothness and graph assumptions,

$$d_{\mathcal{C}}(\sqrt{n}(\overline{Y}_n - \theta_K^{\star}), Z) \lesssim \frac{1}{\sqrt{n}K} + n^{\frac{1}{2} - \beta}\sqrt{K} + \frac{n^{-\frac{\beta}{2}}}{\sqrt{K}},$$

for a suitable Gaussian Z with covariance Σ_n (finite-sample scaling).

- $d_{\mathcal{C}}$ goes to zero as long as $K = o(n^{2\beta-1})$; previously observed in Gu & Chen (2024), but not explicitly quantified.
- · Replacing Σ_n by global limit Σ yields error

$$d_{\mathcal{C}}(\sqrt{n}(\overline{Y}_{n}-\theta_{K}^{\star}), N(0, K^{-1}\Sigma)) \lesssim \sqrt{K}(n^{\frac{1}{2}-\beta}+n^{\beta-1}).$$

- If $K = o(\sqrt{n})$, optimal β is $\beta^* = \frac{3}{4}$.
- More details in Section 2 of the camera-ready version.

5

Key Result 2: time-uniform approximations

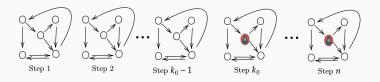


Figure 2: client(s) may turn malicious at some step.

Goal: identification of this step as well as the malicious client

- Any relevant attack detection mechanism will depend on distribution of the entire trajectory; see Section 3.1 and Algorithm 2 in the camera-ready version.
- Establish statistical control over trajectory in absence of attackers.

Key Result 2: time-uniform approximations

Establish statistical control over trajectory in absence of attackers.

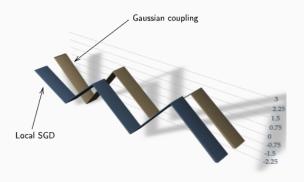


Figure 3: Establish valid Gaussian-process "twins" or couplings to the local SGD process.

Key Result 2: time-uniform approximations

Aggr-GA. Let $Y_t = K^{-1} \sum_{k=1}^K \theta_t^k$. Let A be the Hessian. There exists i.i.d. Gaussian variables Z_t such that

$$Y_{t,1}^G = (I - \eta_t A) Y_{t-1,1}^G + \eta_t Z_t K^{-1/2}, \quad Y_{0,1}^G = 0,$$

such that

$$\max_{1 \le t \le n} \Big| \sum_{s=1}^{t} (Y_s - \theta_K^* - Y_{s,1}^G) \Big| = O_{\mathbb{P}}(n^{1-\beta}) + o_{\mathbb{P}}(n^{1/p}K^{-1/2}\log n).$$

 We also discuss a client-level time-uniform approximation called Client-GA.

Use. Covariance-explicit construction \Rightarrow Gaussian multiplier bootstrap for max/CUSUM-type statistics.

Simulations

An easy alternative: why not prove functional CLT and use the corresponding Gaussian coupling?

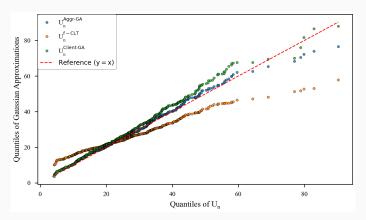


Figure 4: U_n denotes the test statistic for attack detection; x-axis plots the theoretical quantiles, y-axis plots the quantiles based on Gaussian coupling.

Thank You!

Contact **sohambonnerjeeQuchicago.edu** for any questions.