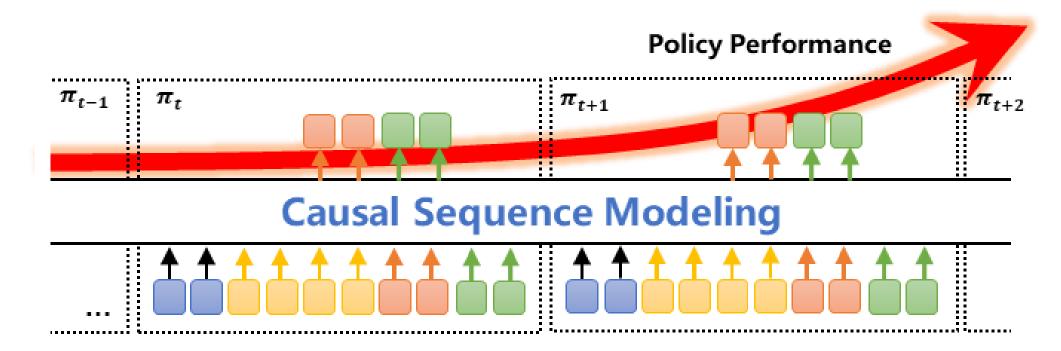
Towards Large-Scale In-Context Reinforcement Learning by Meta-Training in Randomized Worlds

*Fan Wang, *Pengtao Shao, Yiming Zhang, Bo Yu, Shaoshan Liu, Ning Ding, Yang Cao, Yu Kang, Haifeng Wang



ICRL: In-Context Reinforcement Learning

- Self-directed exploration and exploitation
- Learning from external feedback instead of internal reasoning (e.g CoT)
- ICRL is a key to gradient-free, experience-driven learning for decision making



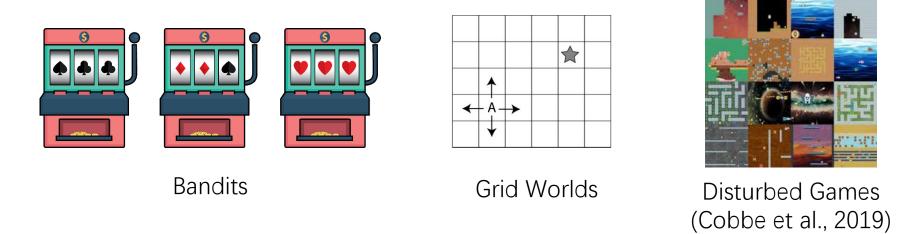
Scaling ICRL is challenging

- The lack of large-scale, low-structural-bias collections of decision tasks.
- Training / Incentivizing ICRL is hard
 - (1) Self supervision or distillation (Laskin et al., 2022) is ineffective
 - (2) RL2 (Duan et al., 2016) is effective but more expensive

Contributions

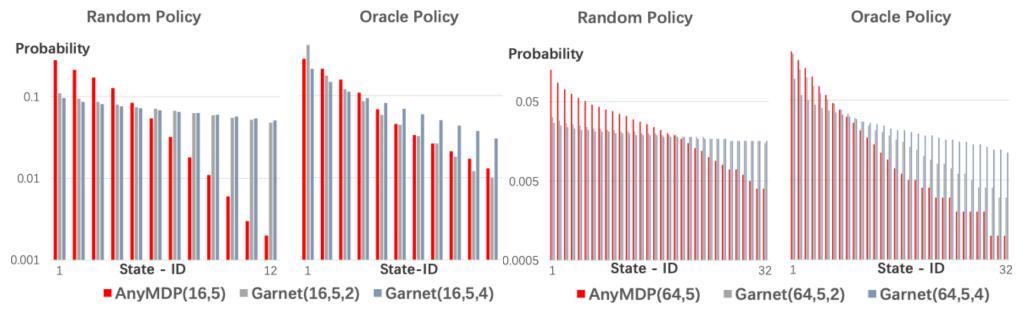
- Scalable task set **AnyMDP**: high quality & diversity
- Incentivizing ICRL with efficient training frameworks
- OmniRL a general in-context learner for discrete decision making: scaling up ICRL to 500K tasks and 500K sequence length:

AnyMDP: high-quality and high-diversity MDP tasks

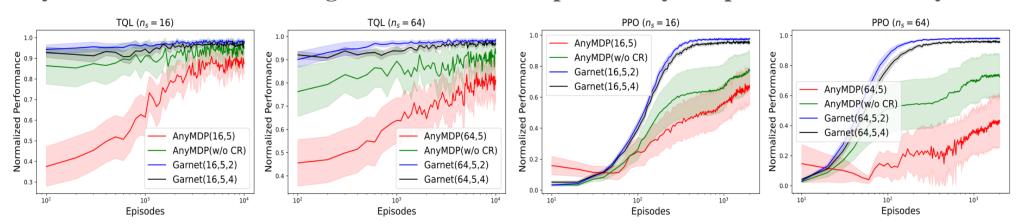


- Manually designed tasks: high structural bias and inductive bias
- Randomly sample transition & rewards (*Bhatnagar et al 2009*): end up in trivial and low-difficulty tasks mostly
- AnyMDP: lower structural bias, higher quality achieved through the constraint of:
 - (1) banded transition matrices
 - (2) composite reward (CR) sampling

Comparison of AnyMDP & Others Tasks



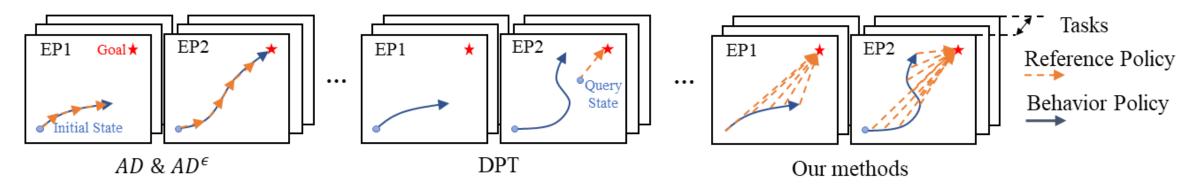
AnyMDP follows the rule: high-valued states is exponentially less probable to reach by chance



AnyMDP tasks raises more challenge to reinforcement learners such as Q-Learning and PPO

Efficient Meta-Training of ICRL

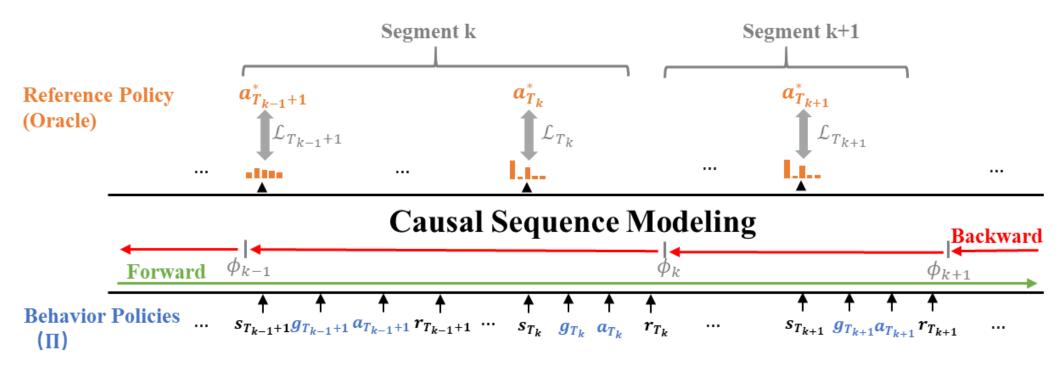
- **Decoupled Policy Distillation (DPD)**: Efficient step-by-step policy distillation via decoupling behavior policy and reference policy
 - Inspired by DPT (Lee, et al. 2024) and DAgger (Ross et al., 2011)
 - Allowing chunk-wise training just like pretraining
 - Reducing the problem of distribution shift by introducing noisy behavior policy



DPD explained: step-by-step trajectory generation with noisy behavior, label with oracle reference

Efficient Meta-Training of ICRL

- **Prior information integration**: Enable ICL with both posterior (reward) and prior information, thus enable self-directed versatile **In-Context-{RL, Offline RL, Imitation}**
- Chunkwise Training & Linear Attention: Overcomes long-context computational limits, enabling training on sequences of arbitrarily length



Context arrangement, model structure, and training target functions

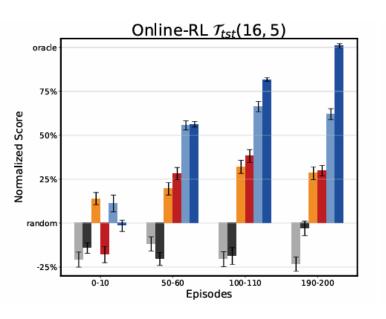
OmniRL: Towards General In-Context Learner of Decision Making

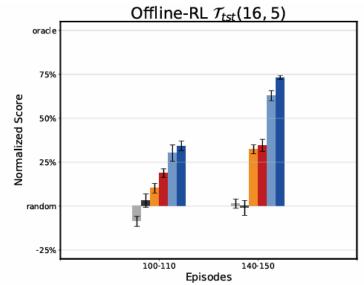
- OmniRL generalizes to **unseen & unconsidered tasks** in meta-training
- OmniRL generalizes to **multi-agent cooperation** without multi-agent training
- OmniRL is two orders of magnitude more sample efficient than canonical RL

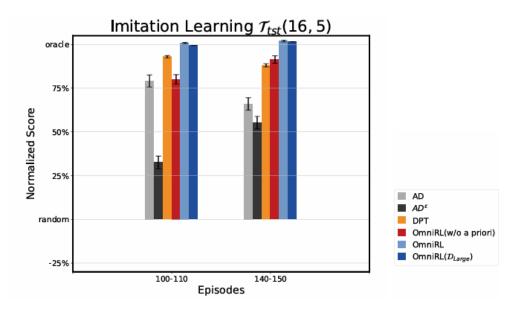
Environments	Performances / AVG. Steps cost / AVG. Episodes cost						
	TQL-UCB PPO		OmniRL (AnyMDP)	OmniRL (GarnetMDP)			
$\mathcal{T}_{tst}(1,5)$ (Bandits) $\mathcal{T}_{tst}(16,5)$ $\mathcal{T}_{tst}(32,5)$ $\mathcal{T}_{tst}(64,5)$ $\mathcal{T}_{tst}(128,5)$	92.1%/100/100 92.0%/297K/4.7K 84.7%/616K/5.6K 83.7%/1.1M/5.1K 73.2%/1.8M/6.9K	$\begin{array}{c} 95.6\%/1.2K/1.2K \\ 90.6\%/476K/9.7K \\ 72.2\%/618K/9.7K \\ 58.3\%/1.1M/9.4K \\ 49.0\%/1.3M/8.6K \end{array}$	82.5%/103/103 95.3%/2.0K/29 90.3%/6.5K/47 91.3%/7.7K/25 80.2%/36.3K/100	46.6%/33/33 $47.8%/1.6K/24$ $42.0%/5.0K/44$ $47.1%/6.6K/24$ $32.3%/9.0K/31$			
$\begin{aligned} & Garnet(16,5,2) \\ & Garnet(64,5,2) \end{aligned}$	98.8%/241K/2.1K $98.7%/614K/1.7K$	97.1%/57K/0.5K 98.1%/96K/0.26K	$85.9\%/8.2K/71 \ 80.4\%/8.0K/19$	99.0%/10.8K/95 87.3%/7.4K/23			
CliffWalking FrozenLake (non-slippery) FrozenLake (slippery) Discrete-Pendulum (g=1) Discrete-Pendulum (g=5) Discrete-Pendulum (g=9.8) Switch2 (Multi-Agent)	$\begin{array}{c} 100\%/3.1K/35 \\ 95.3\%/23.6K/3.7K \\ 96\%/208K/10.0K \\ 94.9\%/22K/110 \\ 99.7\%/426K/2.13K \\ 90.2\%/2.0M/10.0K \\ 98\%/3.8K/110 \end{array}$	95.9%/99.3K/2.7K $96.8%/18.2K/2.1K$ $95.6%/73.6K/4.7K$ $99.3%/198K/990$ $99.8%/132K/660$ $98.3%/186K/930$	100%/3.0K/65 $99.8%/0.3K/35$ $79.5%/7.7K/245$ $90.5%/8K/40$ $91.8%/34K/170$ $73.4%/33K/165$ $80.4%/2.8K/100$	$\begin{array}{c} 63\%/29K/300 \\ 75.1\%/4.0K/250 \\ 31.3\%/11.8K/800 \\ 0.0\%/-/- \\ 0.0\%/-/- \\ 0.0\%/-/- \\ - \end{array}$			
Darkroom (6x6) Darkroom (8x8) Darkroom (10x10)	98.1%/6.2K/481 96.8%/24.5K/2.0K 89%/31.1K/1.7K	97.6%/10.6K/560 96.7%/15.9K/930 92.3%/15.7K/570	95.2%/845/40 93.8%/1.5K/40 91.7%/2.8K/100	90.5%/21.3K/440 88.9%/30.4K/480 75.6%/20.8K/280			

OmniRL: Towards General In-Context Learner of Decision Making

• OmniRL performs In-Context-{RL, Offline RL, Imitation} better than previous ICRL

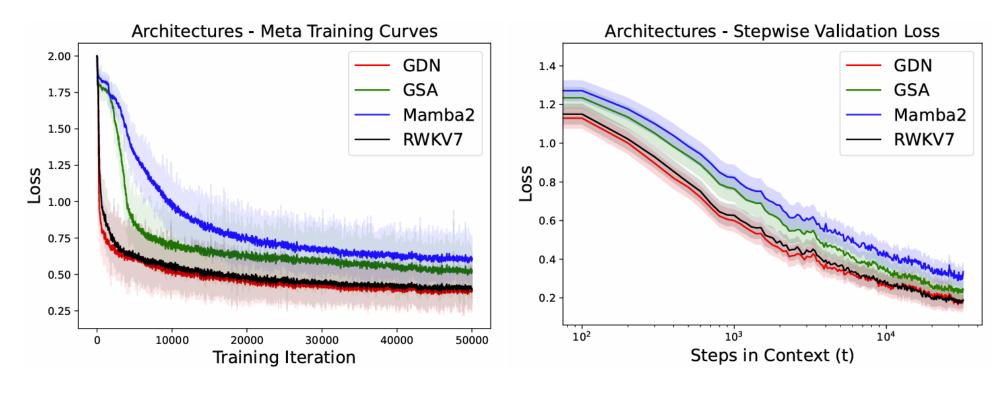






Benchmarking Long-Context Modeling

• AnyMDP is an effective benchmark for evaluating **long-context modeling**



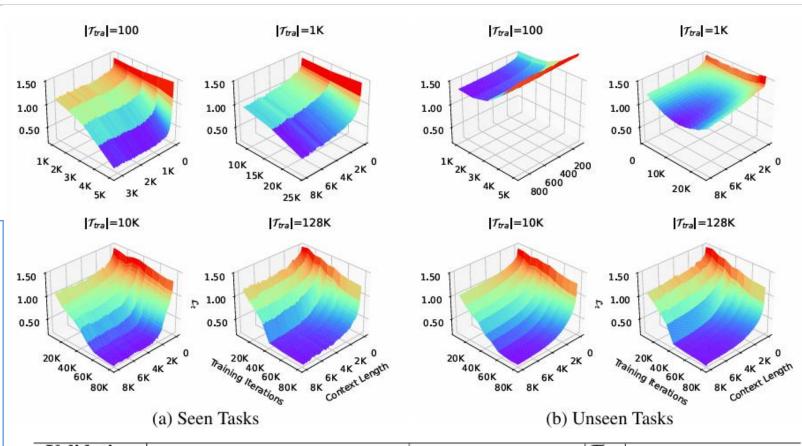
Comparison of the performance of linear-attention models in AnyMDP dataset

Investigating Task Scaling in ICRL

- Larger task scale switches ICRL from task identification to task learning mode
- Longer context is a cost to larger generalization scope

Ensights & Takeaways

- Task diversity (at least 10K) and Long-context modeling is essential for ICRL
- ICRL generalization requires longer adaptation periods, prioritizing asymptotic performance over few-shot performance in evaluation.



Validation	Metrics	$ \mathcal{T}_{tra} $				
set	Witties	100	1K	10K	128K	
Seen	$\max(d_t)$	> 81.0%	> 65.4%	$\geq 86.6\%$	$\geq 84.5\%$	
tasks	$\min(t)$ s.t. $d_t \ge 80\%$	0.88K	-	2.4K	5.2K	
Uneen tasks	$\max(d_t)$	17.9%	38.0%	84.4%	$\geq 84.8\%$	
	$\min(t)$ s.t. $d_t \ge 80\%$	-	-	3.9K	5.1K	
	$\max(d_t)$ achieved at iteration	2K	14K	72K	$\geq 80K$	

Thanks for watching

