

PhysioWave: A Multi-Scale Wavelet-Transformer for Physiological Signal Representation

Integrated Systems Laboratory (ETH Zürich)

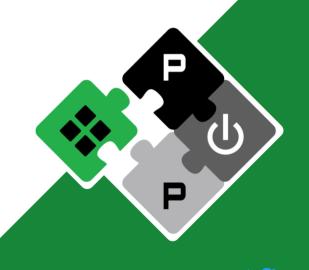
Yanlong Chen yanlchen@student-ethz.ch

Supervisors

Dr. Yawei Li, Prof. Dr. Simone Benatti, Prof. Dr. Luca Benini, Mattia Orlandi, Pierangelo Maria Rapa

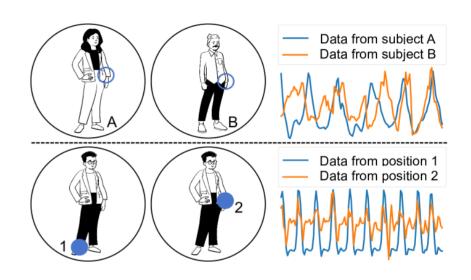
PULP Platform

Open Source Hardware, the way it should be!



Introduction & Motivation

- Core Challenges in Biosignal Processing
 - Low Signal-to-Noise Ratio (SNR): Electrode skin impedance, power-line interference, and motion artifacts obscure weak signals
 - Strong Non-stationarity & Inter-subject
 Variability: Statistical properties of biosignals change over time and differ significantly from one person to another,
 - Cross-device / Cross-lab Heterogeneity:
 Different sampling rates, channel counts,
 hardware frequency responses ⇒ domain shift



Inter-subject Variability & Domain shift

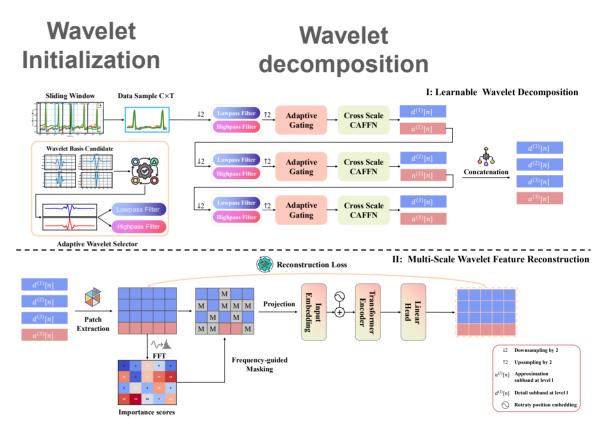
PhysioWave Pretraining Strategy:

Wavelet Initialization Initialize a set of standard wavelet functions (db4,sym4) → low-pass and high-pass filters.

Wavelet decomposition

 Obtain multi-scale frequencyband representations

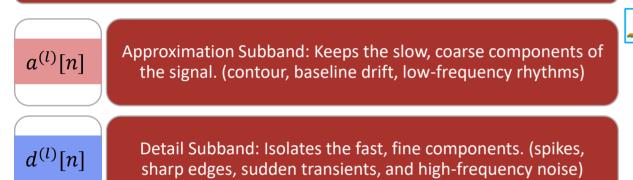
Frequencyguided Masking Patches are masked and passed through Transformer layers for patch reconstruction.

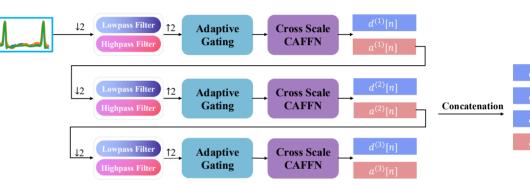


Frequency-guided Masking

I: Learnable Wavelet Decomposition:

Wavelet decomposition breaks down signals into different frequency components at multiple time scales





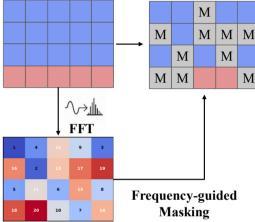
multi-scale feature

- X Problem: Low SNR
- Solution: High pass bands isolate transient spikes from baseline noise, improving denoising.
- X Problem: Strong Non stationarity
- **Solution:** multi-scale analysis captures both fast and slow dynamics, so the model sees transient bursts and long-term trends separately

II: Multi-Scale Wavelet Feature Reconstruction:

We mask a subset of time-frequency patches across all bands, then train the model to reconstruct the missing coefficients.

Patchify



Frequency-Guided Masking Flow

Spectral Analysis

The energy of each patch in the frequency domain is computed.

Analyzes the spectral importance of different patches using FFT.

Strategic Masking

Preferentially mask patches with higher frequency importance (the most informative regions).

FgM turns reconstruction into a harder, context-driven puzzle, forces the model to learn robust, scale-aware features.

03.11.2025

Importance scores

Datasets used for pretraining

- PhysioWave-ecg is trained on approximately 182 GB of 12-lead ECG recordings, while PhysioWaveemg utilizes about 823 GB of EMG data. For each modality, we provide three parameter configurations: Small (5M), Base(15M), and Large (37M).
- Pretraining: 50 epochs on 16 × NVIDIA A100 60 GB (global batch 64; AdamW + cosine LR).

Table 7: 12-lead ECG corpora used for pretraining.

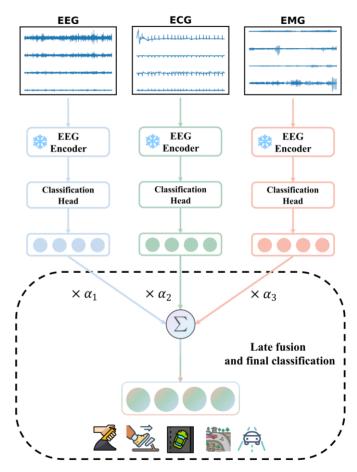
Dataset	Subjects	Records	Dur. (s)	f_s (Hz)	Size
MIMIC-IV-ECG [43]	~ 160000	$\sim \! 800000$	10	500	90.4 GB
MedalCare-XL [44]	13	16900	10	500	26.2 GB
CODE-15% [45]	233 770	345 779	10	400	63.3 GB
Norwegian Athlete [46]	28	28	10	500	52.8 MB
Georgia Cohort [47]	10 344	10344	10	500	1.2 GB

Table 8: Surface-EMG corpora used for pretraining.

Dataset	Subjects Records		Dur. (s)	f_s (Hz)	Channels	Size	
	Busjeeus	11000145	241(5)	Js (III)			
NinaPro DB6 [48]	10	\sim 8.4 k	4	2000	14	20.3 GB	
NinaPro DB7 [49]	22	\sim 5.4 k	5	2000	12	30.9 GB	
NinaPro DB8 [50]	12	$\sim 2.4 \mathrm{k}$	7.5	1111	16	23.6 GB	
EMG2Pose [51]	193	25 253	60	2000	16	431 GB	
EMG2Qwerty [52]	108	1 135	1 080	2000	16	317 GB	

Methods for Downstream Tasks

- **©** Single-modal tasks.
- The entire pretrained encoder is finetuned end-to-end.
- All embeddings are mean-pooled connected with a lightweight classification head.
- Multi-modal tasks
- For each modality, keep the pretrained encoder frozen and train only small classification head together with a set of learnable fusion weights α
- The final prediction is obtained by taking a weighted average of the per-modality logits using these α values.



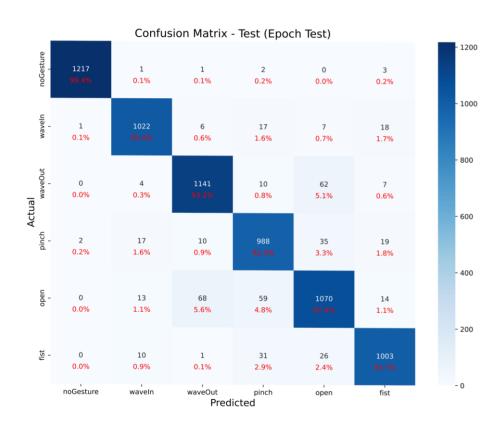
Multi-modal framework: Classification of driving behaviors in the MPDB dataset.

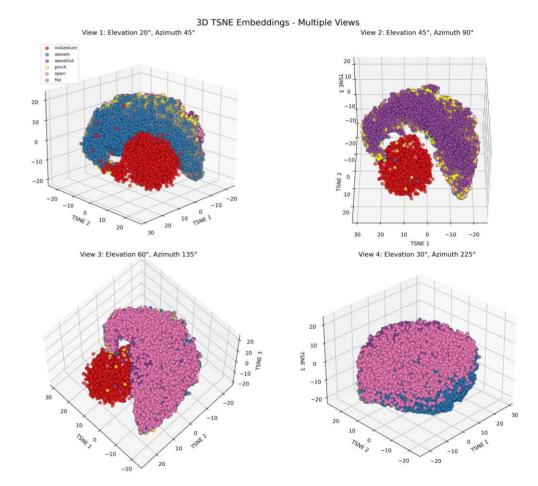
**** ECG** Rhythm Classification Performance

Method	Parameters	P	PTB-XL		CPSC 2018		Chapman-Shaoxing	
	Farameters	F1	AUROC	F1	AUROC	F1	AUROC	
ECG-Chat 2024	13B	55.9	94.1	80.1	95.7	_	_	
MERL 2024	11M	48.1	91.9	72.8	92.6	_	87.9	
MaeFE 2023	9M	64.7	88.6	71.6	94.5	_	_	
OpenECG-SimCLR	11M	46.9	91.5	73.1	92.4	52.3	95.1	
OpenECG-BYOL	11M	47.7	91.1	72.8	92.6	51.5	94.8	
OpenECG-MAE	11M	48.1	90.9	74.5	93.2	50.8	94.2	
	5M	65.8	92.7	71.6	95.5	52.1	96.4	
	15M	64.5	93.4	72.5	95.9	53.8	97.2	
	37M	66.7	94.6	73.1	96.1	54.8	98.3	

- In the ECG multi-label task, every ECG sample may exhibit several abnormalities;
- The model must output all relevant diagnoses from a set of SNOMED-CT labels.
- 3. Performance is reported with macro-averaged F1 and AUROC over this full label set.

Visualization of EMG downstream tasks

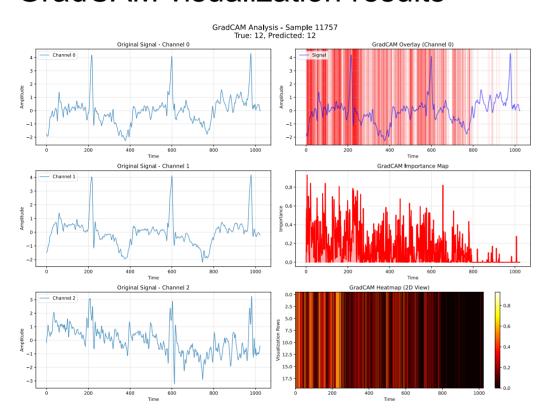




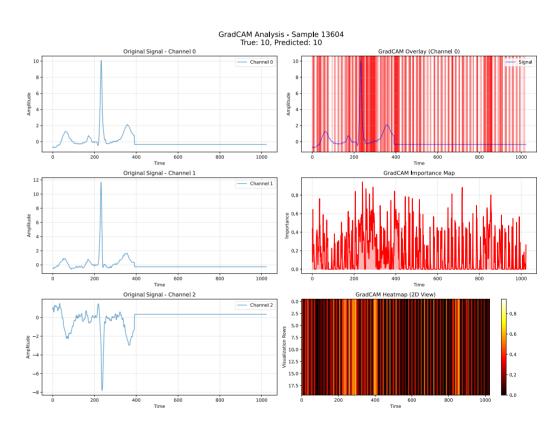
3D t-SNE embeddings visualization from multiple viewing

PUP

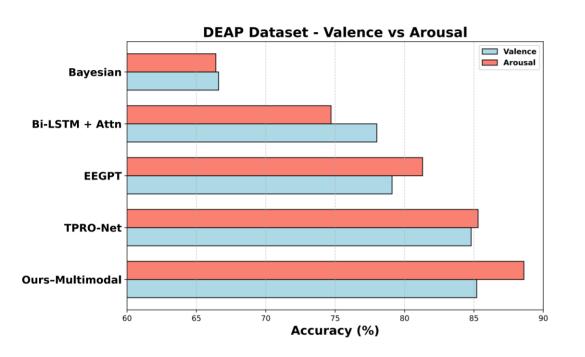
GradCAM visualization results

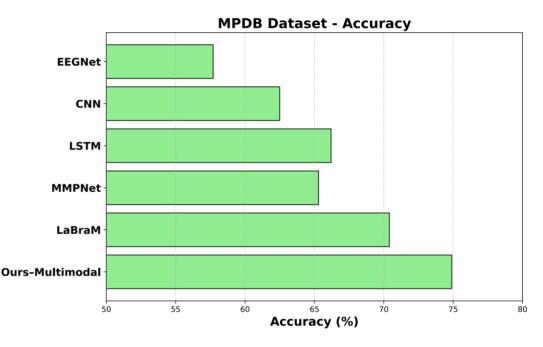


T-wave Inversion (TInv)



ST-segment Depression (STD)





© DEAP gathers simultaneous EEG and EMG while subjects watch music videos designed to evoke specific emotions.

MPDB studies driver behaviour using synchronized EEG, EMG, and ECG signals.(Smooth driving, Acceleration, Deceleration, Lane-change, Turning)

Conclusion & Future Work

Solution Expanding signal modalities

extending signals like EEG and PPG, creating comprehensive coverage of physiological data types.

Developing a universal multimodal model

moving from separate models for different signals to a single, unified architecture that can seamlessly process all biosignal modalities simultaneously, functioning as a "physiological diagnostic system."

Enhanced integration capabilities

improving the multi-modal fusion mechanisms to create a truly generalized framework that can handle diverse sensor inputs and cross-modal interactions for robust clinical applications.

PULP Platform

Open Source Hardware, the way it should be!

Yanlong Chen yanlchen@student-ethz.ch

Institut für Integrierte Systeme – ETH Zürich

DEI – Universitá di Bologna

pulp-platform.org

