

Unified Transferability Metrics for Time Series Foundation Models

Weiyang Zhang, Xinyang Chen, Xiucheng Li, Kehai Chen, Weili Guan, Liqiang Nie Harbin Institute of Technology (Shenzhen)

Summary

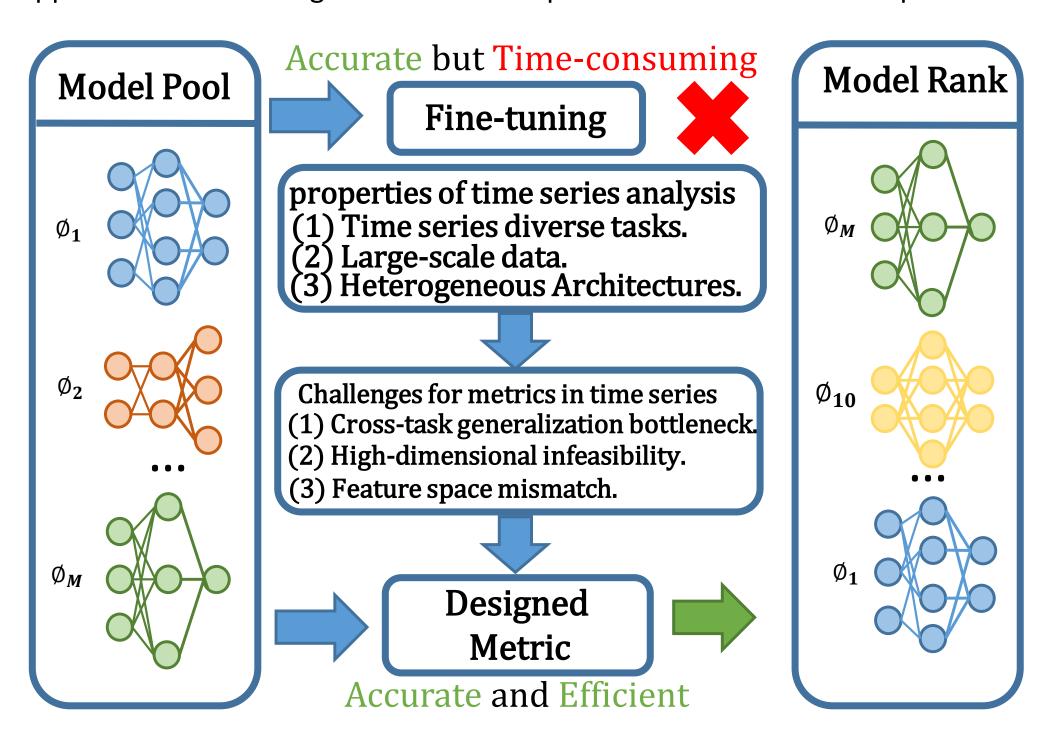
- ► Empirical Insight: A good time series pre-trained model can effectively capture long-term dependencies and key temporal patterns, while different downstream tasks have distinct feature requirements.
- ► TEMPLATE:A flexible and generalizable method, supporting both classification and regression tasks.
- ➤ General Evaluations: TEMPALTE achieve state-of-the-art performance on all downstream tasks, including classification, forecasting, imputation, and anomaly detection!

Background

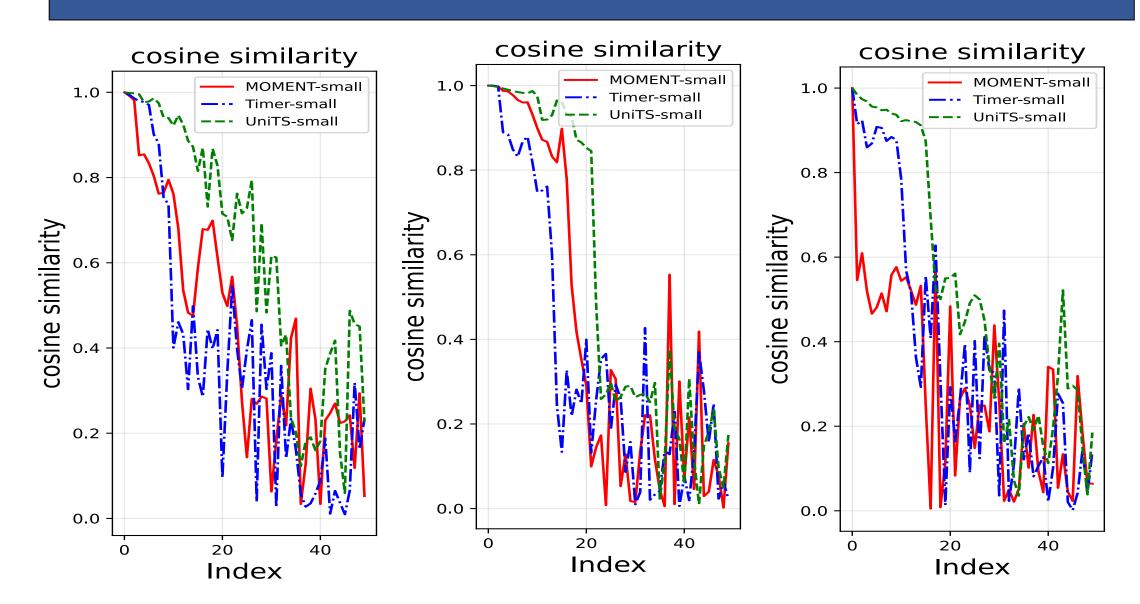
- ▶ Pre-trained models in the field of time series are constantly increasing, and a large number of pre-trained models are already available on open-source platforms.
- No single pre-trained model can perform well on all time series downstream tasks, thus how to quickly select the pre-trained model suitable for downstream tasks without fine-tuning has become an urgent problem to be solved.

Challenges

- Cross-task generalization bottleneck: Mainstream time series tasks exhibit diversity, and the designed metrics need to achieve cross-task adaptability.
- ► High-dimensional infeasibility: Downstream datasets feature large-scale characteristics. Designed metrics must balance efficiency and accuracy.
- ► Feature space mismatch: Heterogeneity of model architectures and differences approaches to handling inter-channel dependencies result in discrepancies.



Motivation



▶ By comparing the feature matrices before and after fine-tuning, and examining the similarity of the eigenvectors corresponding to their singular values, we find that larger singular values are more stable than smaller ones.

Methods

Preliminary

The feature extracted by the l-th layer of the pre-trained model $\phi_m(\cdot)$ is denoted as \mathbf{H}^l , where $\mathbf{H}^l = \phi_m(\mathbf{X}) \in \mathbb{R}^{N \times d}$ and d is the feature dimension.

▶ Dependency Learning Score

Obtain the feature matrix of the trend component via trend decomposition.

$$\mathbf{T} = \boldsymbol{\phi}_{m} \big(trend(\mathbf{X}) \big) \tag{1}$$

Perform SVD to decompose the features.

$$\mathbf{H} = \mathbf{U}_h \mathbf{\Sigma}_h \mathbf{V}_h^T, \mathbf{T} = \mathbf{U}_t \mathbf{\Sigma}_t \mathbf{V}_t^T \tag{2}$$

Quantify the model's capability in capturing long-term dependencies.

$$S_{dl} = \frac{Conv(u_h, u_t)}{\lambda_h \lambda_t} \tag{3}$$

Pattern Learning Score:

Quantify the model's capability in learn primary temporal patterns.

$$S_{pl} = \frac{\sigma_t}{||\mathbf{T}||_*} \tag{4}$$

► Task Adaptation Score:

Quantify the model's capability in adapting to downstream tasks.

$$S_{ta} = \frac{HSIC(K, L)}{HSIC(K, K)HSIC(L, L)}.$$
 (5)

Experiment Results

Table: Classification Benchmark Performance (Weighted Kendall's τw) of different methods

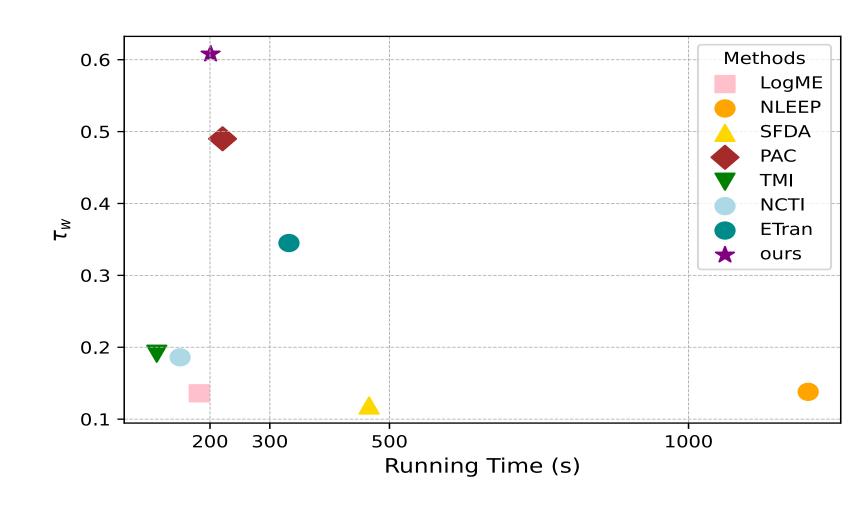
Datasets	LogME	NLEEP	SFDA	PACTran	TMI	NCTI	ETran	RetMMD	TEMPLATE
EthanolConcentration	0.567	0.432	0.120	0.488	-0.430	-0.32	0.686	0.512	0.724
FaceDetection	-0.203	0.092	$\boldsymbol{0.598}$	0.306	-0.600	0.109	-0.359	0.310	0.597
Handwriting	-0.445	-0.104	0.314	0.596	0.768	0.700	0.478	0.365	$\boldsymbol{0.822}$
${\it Japanese Vowels}$	0.231	0.213	0.021	0.306	0.302	0.340	-0.196	$\boldsymbol{0.654}$	0.447
PEMS-SF	-0.472	-0.612	-0.312	0.306	-0.300	0.053	0.076	$\boldsymbol{0.520}$	0.470
${f SelfRegulation SCP1}$	0.356	0.529	0.459	0.619	0.300	0.310	0.651	0.450	0.484
${f SelfRegulation SCP2}$	0.268	0.241	-0.198	0.457	0.455	0.450	0.667	0.397	0.551
${\bf Spoken Arabic Digits}$	0.342	0.321	-0.367	0.744	0.647	-0.210	0.479	0.201	0.637
${\bf UWave Gesture Library}$	0.584	0.127	0.440	0.592	0.576	0.245	0.624	0.362	0.719
Average	0.136	0.138	0.119	0.490	0.191	0.186	0.345	0.419	0.608

Table: Forecasting Benchmark Performance (Weighted Kendall's τw) of different methods

Methods	ETTh1	ETTh2	ETTm1	${ m ETTm2}$	Weather	Electricity	Traffic	Average
-LogME	0.215	0.167	0.400	0.565	0.114	-0.130	-	0.190
ETran	0.138	0.212	0.189	0.351	0.474	0.302	0.192	0.265
Ours	0.240	-0.003	0.518	0.576	0.412	0.361	0.432	0.362

Analysis

Time complexity analysis: TEMPLATE strikes a high degree of balance between efficiency and accuracy.



► Ablation Study: All three metrics achieve positive ranking correlations, and their combination yields the highest average ranking correlation.

