Marginal-Nonuniform PAC Learnability

NeurIPS 2025

Steve Hanneke, Purdue University Shay Moran, Technion and Google Research Maximilian Thiessen, TU Wien

Joint work with...

Steve Hanneke Purdue University

Shay Moran Technion and Google Research

• Binary classification problem |Y| = 2

- Binary classification problem |Y| = 2
- Learn a classifier $h: X \to Y$ mapping data points $x \in X$ to labels in $y \in Y$

- Binary classification problem |Y| = 2
- Learn a classifier $h: X \to Y$ mapping data points $x \in X$ to labels in $y \in Y$
- Hypothesis class \mathcal{H} of classifiers $f: X \to Y$

- Binary classification problem |Y| = 2
- Learn a classifier $h: X \to Y$ mapping data points $x \in X$ to labels in $y \in Y$
- Hypothesis class \mathcal{H} of classifiers $f: X \to Y$
- Training examples are pairs (x, y) where:
 - ullet x is drawn from a fixed but unknown distribution $\mathcal{D} \in \Delta(X)$ over X
 - ullet $y=f^*(x)$ for some unknown target $f^*\in \mathcal{H}$

- Binary classification problem |Y| = 2
- Learn a classifier $h: X \to Y$ mapping data points $x \in X$ to labels in $y \in Y$
- Hypothesis class \mathcal{H} of classifiers $f: X \to Y$
- Training examples are pairs (x, y) where:
 - x is drawn from a fixed but unknown distribution $\mathcal{D} \in \Delta(X)$ over X
 - $y = f^*(x)$ for some unknown target $f^* \in \mathcal{H}$
- Training sample $S_n = ((x_1, y_1), \dots, (x_n, y_n))$ i.i.d. from \mathcal{D}

- Binary classification problem |Y| = 2
- Learn a classifier $h: X \to Y$ mapping data points $x \in X$ to labels in $y \in Y$
- Hypothesis class \mathcal{H} of classifiers $f: X \to Y$
- Training examples are pairs (x, y) where:
 - x is drawn from a fixed but unknown distribution $\mathcal{D} \in \Delta(X)$ over X
 - $y = f^*(x)$ for some unknown target $f^* \in \mathcal{H}$
- Training sample $S_n = ((x_1, y_1), \dots, (x_n, y_n))$ i.i.d. from \mathcal{D}
- Learning algorithm $A:(S_n)\mapsto \hat{h}_n$
- Error of classifier $h: X \to Y$

$$\operatorname{er}_{\mathcal{D},f^*}(h) = \mathbb{P}_{x \sim \mathcal{D}}(h(x) \neq f^*(x))$$

A PAC learner for $\mathcal H$ is a learning algorithm that for any $f^* \in \mathcal H$, $\varepsilon > 0$, and data distribution $\mathcal D$, uses a sample size $R(\frac{1}{\varepsilon})$ and outputs a $h: X \to Y$ such that $\operatorname{er}_{\mathcal D, f^*}(h) \le \varepsilon$ with high probability

When is PAC learning possible?

Classical answer [Vapnik & Chervonenkis, Blumer et al., Haussler et al., . . .]

- \mathcal{H} is PAC learnable $\iff \mathcal{H}$ has finite VC dimension.
- VC = largest shatterable set: points $\{ \bullet, \bullet \}$ with all possible labels

When is PAC learning possible?

Classical answer [Vapnik & Chervonenkis, Blumer et al., Haussler et al., . . .]

- \mathcal{H} is PAC learnable $\iff \mathcal{H}$ has finite VC dimension.
- VC = largest shatterable set: points $\{ \bullet, \bullet \}$ with all possible labels

$$\{ ullet, ullet \}$$
 $\{ ullet, ullet \}$ $\{ ullet, ullet \}$

Error rate

$$\mathbb{E}_{\mathcal{S}_n}[\operatorname{er}_{\mathcal{D},f^*}(\hat{h}_n)] = \Theta\left(rac{\mathsf{VC}}{n}
ight)$$

PAC learning is uniform

PAC learning is uniform over all $f^* \in \mathcal{H}$ and distributions \mathcal{D} :

$$\exists \hat{h}_n \text{ s.t. } \exists C,c>0 \text{ s.t. } \forall \mathcal{D} \in \Delta(X) \ \forall f^* \in \mathcal{H} \text{: } \mathbb{E}[\operatorname{er}_{\mathcal{D},f^*}(\hat{h}_n)] \leq \mathit{CR}(\mathit{cn}) \text{ for all } \mathit{n}.$$

PAC learning is uniform

PAC learning is uniform over all $f^* \in \mathcal{H}$ and distributions \mathcal{D} :

$$\exists \hat{h}_n \text{ s.t. } \exists \mathcal{C}, c > 0 \text{ s.t. } \forall \mathcal{D} \in \Delta(X) \ \forall f^* \in \mathcal{H} \text{: } \mathbb{E}[\text{er}_{\mathcal{D}, f^*}(\hat{h}_n)] \leq \mathit{CR}(\mathit{cn}) \text{ for all } \mathit{n}.$$

In real-world applications we often have simple distributions and target concepts

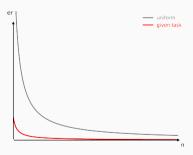


PAC learning is uniform

PAC learning is uniform over all $f^* \in \mathcal{H}$ and distributions \mathcal{D} :

$$\exists \hat{h}_n \text{ s.t. } \exists C,c>0 \text{ s.t. } \forall \mathcal{D} \in \Delta(X) \ \forall f^* \in \mathcal{H} \text{: } \mathbb{E}[\operatorname{er}_{\mathcal{D},f^*}(\hat{h}_n)] \leq CR(cn) \text{ for all } n.$$

In real-world applications we often have simple distributions and target concepts



(Uniform) PAC learning is too worst-case!

Main idea:

• some target concepts are much easier to learn than others

Main idea:

- some target concepts are much easier to learn than others
- ullet e.g., ${\cal H}=$ all polynomials: degree 2 easier to learn than degree 10

Main idea:

- some target concepts are much easier to learn than others
- ullet e.g., ${\cal H}=$ all polynomials: degree 2 easier to learn than degree 10
 - ightarrow allow error rate to depend on the target concept $f^* \in \mathcal{H}$

Main idea:

- some target concepts are much easier to learn than others
- ullet e.g., ${\cal H}=$ all polynomials: degree 2 easier to learn than degree 10

ightarrow allow error rate to depend on the target concept $f^* \in \mathcal{H}$

SRM [Vapnik], Occam's razor [Blumer et al.], Minimum description length [Rissanen], ...

Concept Marginal-nonuniform learning [Ben-David et al.]

Main idea:

• some marginal distributions are much easier to learn than others

Concept Marginal-nonuniform learning [Ben-David et al.]

Main idea:

- some marginal distributions are much easier to learn than others
- e.g., $\mathcal{H}=$ linear classifiers in \mathbb{R}^d : distribution supported on p-dim. subspace with $p\ll d$ easier to learn than p=d

Concept Marginal-nonuniform learning [Ben-David et al.]

Main idea:

- some marginal distributions are much easier to learn than others
- e.g., $\mathcal{H}=$ linear classifiers in \mathbb{R}^d : distribution supported on p-dim. subspace with $p\ll d$ easier to learn than p=d

ightarrow allow error rate to depend on the marginal distribution ${\mathcal D}$ over X

Theorem: Every class \mathcal{H} satisfies (m.nu. = marginal-nonuniform)

1. \mathcal{H} is m.nu. learnable with rate e^{-n} iff $|\mathcal{H}| < \infty$

Theorem: Every class \mathcal{H} satisfies (m.nu. = marginal-nonuniform)

- 1. \mathcal{H} is m.nu. learnable with rate $\frac{e^{-n}}{n}$ iff $|\mathcal{H}| < \infty$
- 2. \mathcal{H} is m.nu. learnable with rate $\frac{1}{n}$ iff $|\mathcal{H}| = \infty$ and $vc(\mathcal{H}) < \infty$

Theorem: Every class \mathcal{H} satisfies (m.nu. = marginal-nonuniform)

- 1. \mathcal{H} is m.nu. learnable with rate $\frac{e^{-n}}{n}$ iff $|\mathcal{H}| < \infty$
- 2. \mathcal{H} is m.nu. learnable with rate $\frac{1}{n}$ iff $|\mathcal{H}| = \infty$ and $vc(\mathcal{H}) < \infty$
- 3. $\mathcal H$ requires arbitrarily slow rates to be m.nu. learnable iff $vc(\mathcal H)=\infty$

Theorem: Every class \mathcal{H} satisfies (m.nu. = marginal-nonuniform)

- 1. \mathcal{H} is m.nu. learnable with rate e^{-n} iff $|\mathcal{H}| < \infty$
- 2. \mathcal{H} is m.nu. learnable with rate $\frac{1}{n}$ iff $|\mathcal{H}| = \infty$ and $vc(\mathcal{H}) < \infty$
- 3. \mathcal{H} requires arbitrarily slow rates to be m.nu. learnable iff $vc(\mathcal{H}) = \infty$

So marginal-nonuniform does not help when $|\mathcal{H}| = \infty$?

Main result: fine-grained rate

Combinatorial parameter $\mathit{VC}\text{-}\mathit{eluder}$ dimension $d = \mathsf{VCE}(\mathcal{H})$ [Hanneke & Xu]

• for all classes $d \leq VC(\mathcal{H})$ and often $d \ll VC(\mathcal{H})$

Main result: fine-grained rate

Combinatorial parameter VC-eluder dimension $d = VCE(\mathcal{H})$ [Hanneke & Xu]

• for all classes $d \leq VC(\mathcal{H})$ and often $d \ll VC(\mathcal{H})$

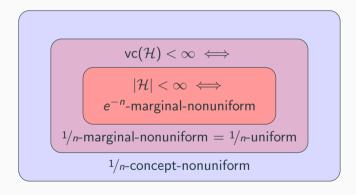
Main theorem: Each class \mathcal{H} with $d < \infty$ is m.nu. learnable with rate $\frac{d}{n}$

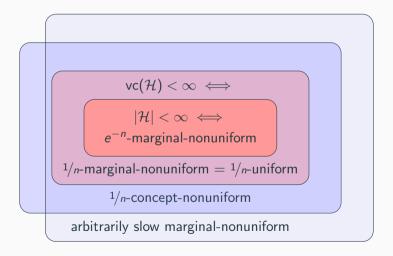
Same rate as uniform learning but typically much better constants!

$$|\mathcal{H}| < \infty \iff$$
 e^{-n} -marginal-nonuniform

$$\text{vc}(\mathcal{H}) < \infty \iff \\ |\mathcal{H}| < \infty \iff \\ e^{-n}\text{-marginal-nonuniform}$$

$$^{1/n\text{-marginal-nonuniform} = 1/n\text{-uniform} }$$





More results in the paper:

- Tight 1/n rate for (concept-)nonuniform learning
- Relationship with universal learning [Bousquet et al.]

Open: when is marginal-nonuniform learning possible?

Thanks!

See you in San Diego and Copenhagen