Region Interaction Graph Neural Operator

A Graph-based framework for robust and accurate operator learning for PDEs on arbitrary domains

Sepehr Mousavi, Shizheng Wen, Levi Lingsch, Maximilian Herde, Bogdan Raonić, Siddhartha Mishra

> Computational Mechanics Group, ETH Zurich, Switzerland Seminar for Applied Mathematics, ETH Zurich, Switzerland ETH AI Center, Switzerland

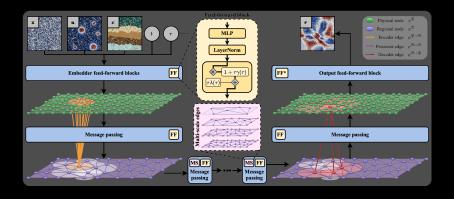
Problem: A system of m time-dependant PDEs in $\Omega_t = (0,T)$ and $\Omega_x \subset \mathbb{R}^d$:

$$\begin{split} \partial_t u &= \mathcal{F}(c,t,u,\nabla_x u,\nabla_x^2 u,\ldots), & \forall (t,x) \in \Omega_t \times \Omega_x, \\ \mathcal{B}u(t,x) &= 0, & \forall (t,x) \in \Omega_t \times \partial \Omega_x, \\ u(0,x) &= a(x), & \forall x \in \Omega_x, \end{split}$$

Assumption: a solution operator $\mathcal{G}^{\dagger}: \mathcal{X} \times \mathcal{Q} \times \Omega_t \times \mathbb{R}^+ \to \mathcal{X}$ exists that maps the solution at any time $t \in \Omega_t$ to the solution at a later time $t + \tau \in \Omega_t$:

$$\mathcal{G}^{\dagger}(u^t, c^t, t, \tau) = u^{t+\tau}$$

Objective: Learn a parameterized operator \mathcal{G}_{θ} which approximates \mathcal{G}^{\dagger} for $au < au_{\max}$



Space-continuous operator:

- (possibly) independent input and output coordinates
- 2 invariant to the training discretization
- (approximately) invariant to the training resolution with the help of edge masking

Random edge masking

How?

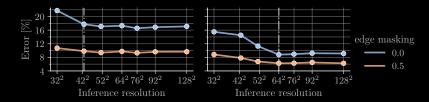
- A percentage of edges are randomly selected and disabled
- Different edges in the encoder, the decoder, and every processor step
- The masked edges change in every training iteration
- All edges are stochastically used during training

Why?

- Forces the model to discover weak correlations
- Training efficiency fewer edges
- Ensemble predictions at inference

RIGNO is approximately resolution invariant.

possible to be trained with low resolutions



Edge masking

- helps in zero-shot sub-resolution inference;
- nakes the training roughly 2x faster; and
- no helps the optimization process, leading to improved accuracies.

RIGNO accurately learns the solution operators of PDEs on arbitrary domains.

Benchmarks on datasets with unstructured space discretizations. Lowest (blue) and second lowest (orange) errors are highlighted.

Dataset	Median relative L^1 error [%]				
	RIGNO-18	RIGNO-12	GeoFNO	FNO DSE	GINO
Heat-L-Sines	0.04	0.05	0.15	0.53	0.19
Wave-C-Sines	5.35	6.25	13.1	5.52	5.82
NS-Gauss	2.29	3.80	41.1	38.4	13.1
NS-PwC	1.58	2.03	26.0	56.7	5.85
NS-SL	1.28	1.91	24.3	29.6	4.48
NS-SVS	0.56	0.73	9.75	26.0	1.19
CE-Gauss	6.90	7.44	42.1	30.8	25.1
CE-RP	3.98	4.92	18.4	27.7	12.3
ACE	0.01	0.01	1.09	1.29	3.33
Wave-Layer	6.77	9.01	11.1	28.3	19.2
AF	1.00	1.09	4.48	1.99	2.00
Elasticity	4.31	4.63	5.53	4.81	4.38

RIGNO's performance is also comparable with SOTA neural operators.

Benchmarks on datasets with uniform-grid space discretizations. Lowest (blue) and second lowest (orange) errors are highlighted.

Dataset	Median relative L^1 error [%]					
	RIGNO-18	RIGNO-12	CNO	scOT	FNO	
NS-Gauss	2.74	3.78	10.9	2.92	14.2	
NS-PwC	1.12	1.82	5.03	7.11	11.2	
NS-SL	1.13	1.82	2.12	2.49	2.08	
NS-SVS	0.56	0.75	0.70	0.99	6.21	
CE-Gauss	5.47	7.56	22.0	9.44	28.7	
CE-RP	3.49	4.43	18.4	9.74	31.2	
ACE	0.01	0.01	0.28	0.21	0.60	
Wave-Layer	6.75	8.97	8.28	13.4	28.0	
Poisson-Gauss	1.80	2.44	2.04	0.68	11.5	

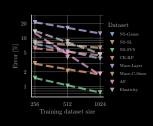
RIGNO's accuracy scales with dataset size.

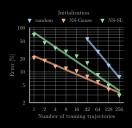
RIGNO's accuracy scales with model size.

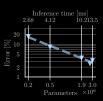
RIGNO can benefit hugely from pre-training.

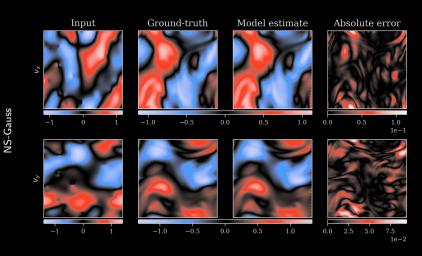
RIGNO is robust to noisy inputs.

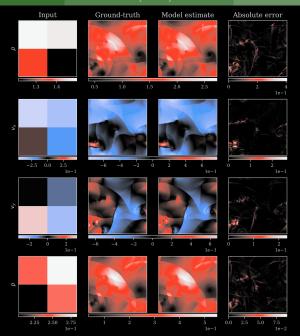
RIGNO can provide indicators of model uncertainties.









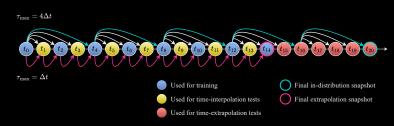


Recall that

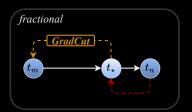
$$u^{t+\tau} \simeq \mathcal{G}_{\theta}(u^t, c^t, t, \tau)$$

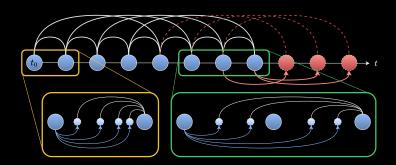
Autoregressive inference:

$$u^0 \xrightarrow[G_a]{} u^{\tau_1} \xrightarrow[G_a]{} u^{\tau_1 + \tau_2} \xrightarrow[G_a]{} \cdots \xrightarrow[G_a]{} u^{\sum_{i=1}^{n-1} \tau_i} \xrightarrow[G_a]{} u^i$$



Variable	Dataset distribution	Interpolation	Extrapolation
	$ \{t_0, t_2, t_4, \dots, t_{12}\} $ $ \{u^{t_0}, u^{t_2}, \dots, u^{t_{12}}\} $	$\{t_1, t_3, \dots\}$ $\{u^{t_1}, u^{t_3}, \dots\}$	$\{t_{15}, t_{16}, \dots\}$ $\{u^{t_{15}}, u^{t_{16}}, \dots\}$
au: (output) r :	$\{2\Delta t, 4\Delta t, \dots, 14\Delta t\}$ $\{u^{t_2}, u^{t_4}, \dots, u^{t_{14}}\}$	$ \begin{cases} 3\Delta t, 5\Delta t, \dots \\ u^{t_3}, u^{t_5}, \dots \end{cases} $	$\{ \frac{\Delta t}{t}, 15\Delta t, 16\Delta t, \dots \} $ $\{ u^{t_1}, u^{t_{15}}, u^{t_{16}}, \dots \}$

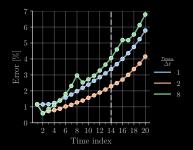


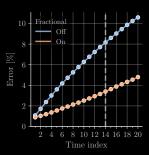


Fractional pairing allows for small time differences (τ)

RESOLUTION INVARIANCE

not restricted to RIGNO





- \circ Near-perfect interpolation in both au and t
- Reasonable extrapolation in t after t_{14}
- \odot Reasonable extrapolation in τ time-continuous operator
- Part of error accumulation with $\tau_{max} = \Delta t$ comparable to $\tau_{max} = 2\Delta t$ First snapshot (u^{t_1}) is still out-of-distribution

Read the full article on Check the codes on

