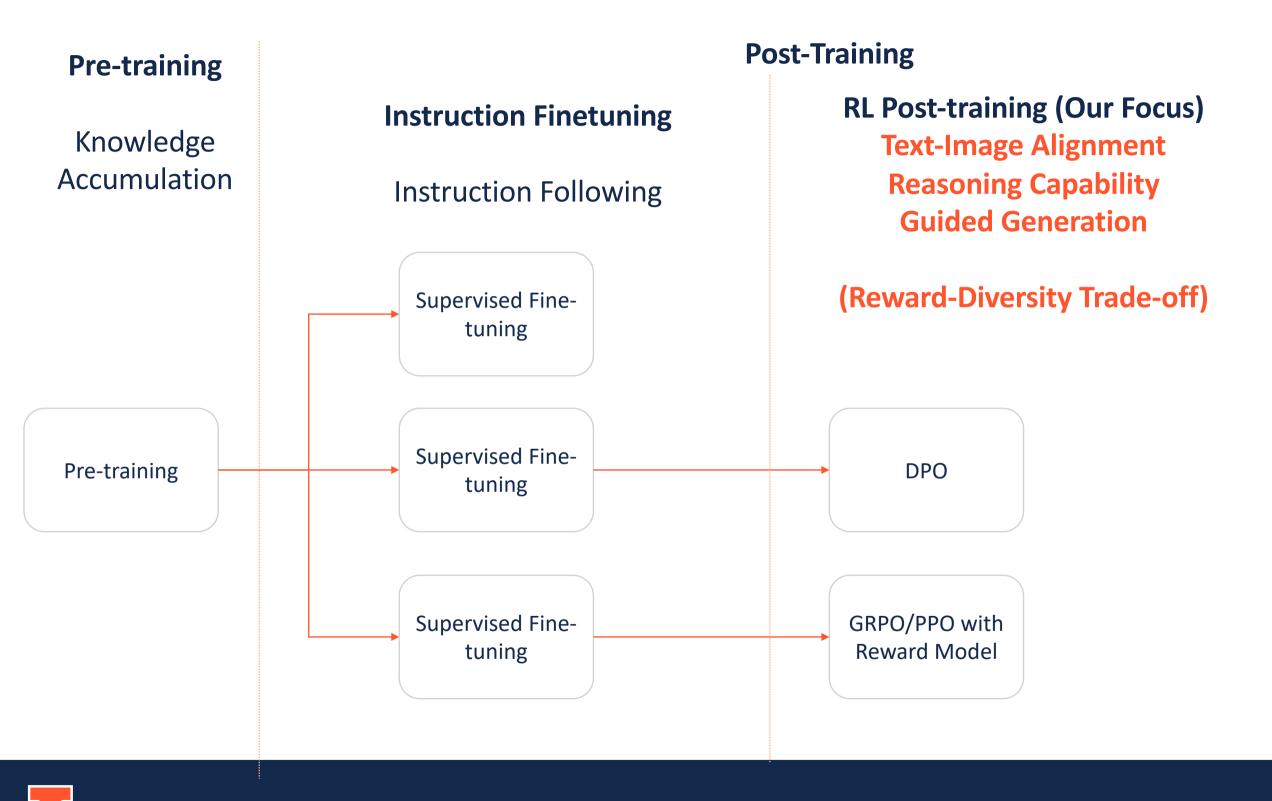


### Introduction



### **Current Limitations & Motivation**

**RLHF** 

The conventional RL objective in Equation (1) can be rewritten as a combination of two loss terms:

$$\mathcal{L}_{RLHF}(\theta) = \mathcal{L}_{RL}(\theta) + \beta \cdot \mathcal{L}_{D}(\theta)$$
 (2)

LLM Fine-tuning

$$\mathcal{L}_{GRPO}(\theta) = \mathcal{L}_{PG}(\theta) + \beta \cdot D_{KL}(\pi_{\theta} || \pi_{ref})$$
(3)

where  $\mathcal{L}_{PG}(\theta)$  represents a clipped policy gradient loss based on group-level advantage estimation.

Diffusion/Flow Fine-tuning

$$\mathcal{L}_{\text{ORW-CFM-W2}}(\theta) = \mathcal{L}_{\text{ORW}} + \beta \cdot \mathbb{E}_{c,t,x_t}[|\mathbf{v}_{\theta}(x_t,t,c) - \mathbf{v}_{\text{ref}}(x_t,t,c)|^2]$$

where  $\mathcal{L}_{ORW} = \mathbb{E}_{c,x_1,t,x_t}[\omega(x_1,c) * |\mathbf{v}_{\theta}(x_t,t,c) - \mathbf{u}_t|^2]$  is the reward weighted loss and  $\mathbf{v}_{\theta}$  and  $\mathbf{v}_{ref}$  are the velocity fields of the fine-tuned and reference policies, respectively.

Diversity &
Quality SD3
Collapse



ORW-CFM-W2



#### Fixed Divergence Regularization

Methods with fixed regularization suffer from overoptimization without diversity (e.g. $\beta \rightarrow 0$ ) or under-optimization (e.g.,  $\beta \rightarrow \infty$ )

Can we find a way to adaptively adjust  $\beta$ ? Yes! Try our ADRPO

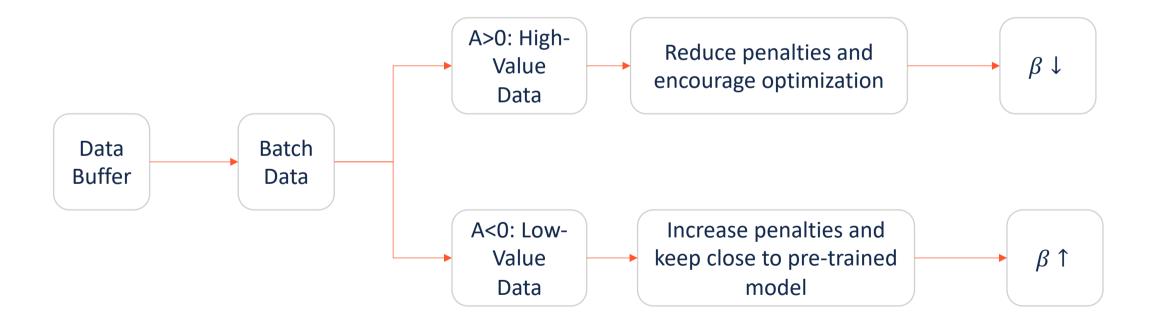
### **ADRPO for Flow Matching**

Can we find a way to adaptively adjust  $\beta$  without extra computation?

$$\mathcal{L}_{\text{RLHF}}(\theta) = \mathcal{L}_{\text{RL}}(\theta) + \beta \cdot \mathcal{L}_{\text{D}}(\theta)$$

$$\mathcal{L}_{\text{ADRPO}}(\theta) = \mathcal{L}_{\text{RL}}(\theta) + (\beta_0 - A) \cdot \mathcal{L}_{\text{D}}(\theta)$$
(2)

$$\mathcal{L}_{\text{ADRPO-FM}}(\theta) = \mathbb{E}_{c \sim p(c), t \sim U(0, 1), x_1 \sim p_{\theta}^{n-1}, x_t \sim p_t(x_t | x_1, c)} [A(x_1, c) \cdot | \mathbf{v}_{\theta}(x_t, t, c) - \mathbf{u}_t |^2] + (\beta_0 - A(x_1, c)) \cdot \mathbb{E}_{c, t, x_t} [| \mathbf{v}_{\theta}(x_t, t, c) - \mathbf{v}_{\text{ref}}(x_t, t, c) |^2]$$
(6)



### **Experimental Results**

Table 1: Comparison of text-to-image generation methods across different evaluation metrics. Best scores are highlighted in blue, second-best in green. We report standard errors estimated over 3 random seeds. ClipDiversity measures the mean pairwise distance of CLIP embeddings [25, 14].

| Method                     | Task Metrics                |                   | Image Quality   | Human Preference            |                   |                  |  |  |
|----------------------------|-----------------------------|-------------------|-----------------|-----------------------------|-------------------|------------------|--|--|
|                            | ClipScore <sup>†</sup> [25] | ClipDiversity  25 | Aesthetic↑ 39   | BLIPScore <sup>†</sup> [12] | ImageReward↑ [39] | PicScore↑ [21]   |  |  |
| Base Model                 |                             |                   |                 |                             |                   |                  |  |  |
| SD3 (2B) [13]              | $29.27 \pm 0.42$            | $5.08 \pm 0.52$   | $5.53 \pm 0.09$ | $0.501 \pm 0.007$           | $0.97 \pm 0.13$   | 20.81±0.09       |  |  |
| Other Flow Matching Models |                             |                   |                 |                             |                   |                  |  |  |
| FLUX.1-Dev (12B) 43        | $31.72 \pm 0.48$            | $4.29 \pm 0.42$   | $5.95 \pm 0.05$ | $0.492 \pm 0.004$           | $1.11\pm0.10$     | $21.83 \pm 0.11$ |  |  |
| SANA-1.5 (4.8B) 38         | $32.18\pm0.36$              | $4.31\pm0.50$     | $5.89 \pm 0.12$ | $0.526 \pm 0.006$           | $1.45 \pm 0.08$   | $21.85 \pm 0.15$ |  |  |
| SD3 Fine-tuning Methods    |                             |                   |                 |                             |                   |                  |  |  |
| SD3+RAFT [9]               | $29.35 \pm 0.27$            | $1.85 \pm 0.19$   | $4.54 \pm 0.04$ | $0.512 \pm 0.001$           | $0.22 \pm 0.08$   | $19.21 \pm 0.02$ |  |  |
| SD3+DPO [37]               | $31.30 \pm 0.52$            | $4.78 \pm 0.46$   | $5.82 \pm 0.05$ | $0.509 \pm 0.005$           | $1.48 \pm 0.10$   | $21.31\pm0.10$   |  |  |
| SD3+ORW-CFM-W2 14          | 31.42±0.39                  | $3.86 \pm 0.37$   | $5.29 \pm 0.05$ | $0.542 \pm 0.006$           | $1.22\pm0.10$     | $20.97 \pm 0.11$ |  |  |
| SD3+ADRPO (Ours)           | $32.97 \pm 0.46$            | 5.13±0.47         | $6.27 \pm 0.06$ | $0.567 \pm 0.004$           | $1.61 \pm 0.05$   | $22.78 \pm 0.15$ |  |  |

Base Model: SD3 (2B)

Reward Model: Clip Score



### **Experimental Results**

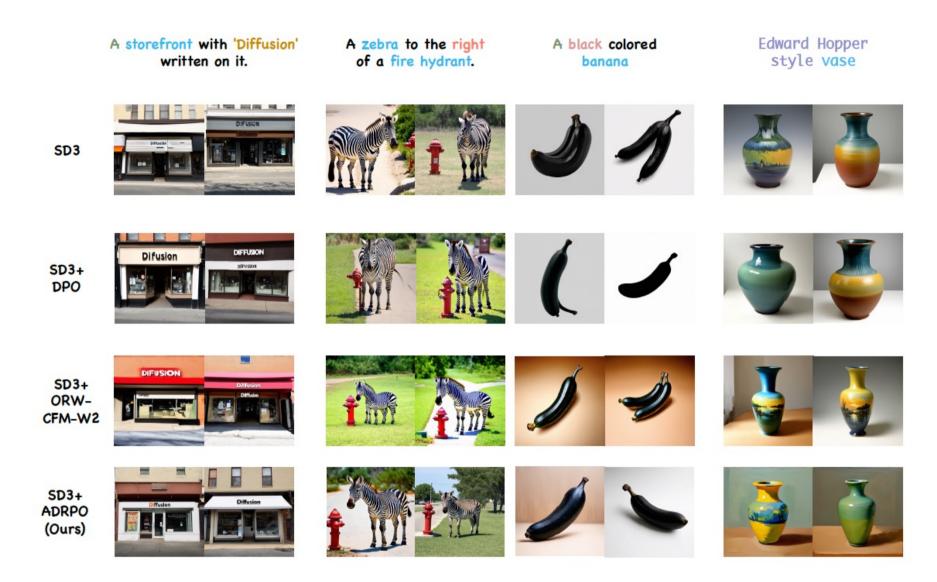


Figure 2: Qualitative Comparison with Other RL Fine-tuning Methods. Our ADRPO demonstrates superior performance in Artistic Style Rendering, Text Rendering, Attribute Binding, Coloring, Counting and Position. We use a similar DPO method as described in [8] to fine-tune SD3 models.

# Visualizing Exploration-Exploitation Trade-off in Policy Optimization

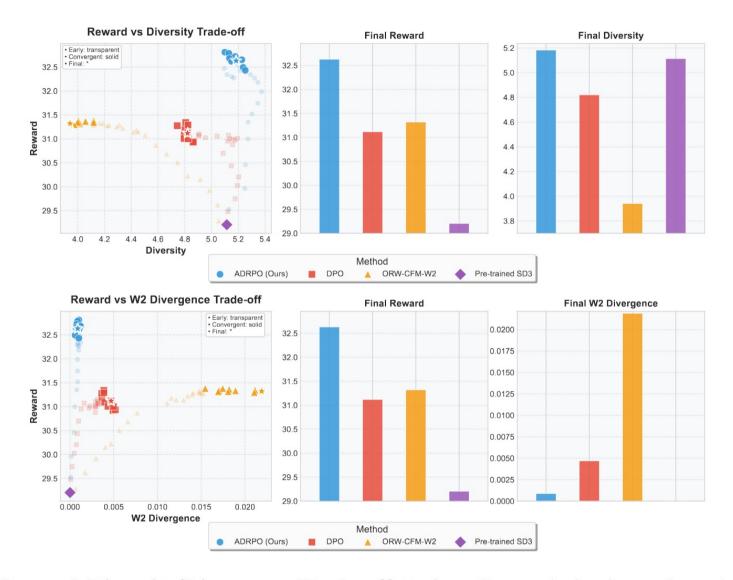


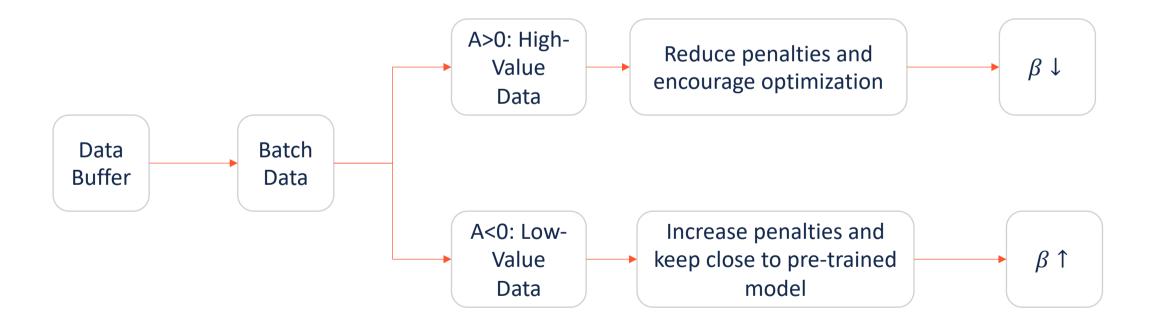
Figure 3: **Reward-Diversity/Divergence Trade-off.** Left: policy optimization trajectories (using a same seed) of different methods throughout training, with transparency indicating progression from early (transparent) to convergent (solid) to final (star) checkpoints. Each point is a learned policy from different iterations. Center and right: final reward and diversity/divergence across methods.

### **ADRPO for LLM & Reasoning Models**

$$\mathcal{L}_{ADRPO}(\theta) = \mathcal{L}_{RL}(\theta) + (\beta_0 - A) \cdot \mathcal{L}_{D}(\theta)$$

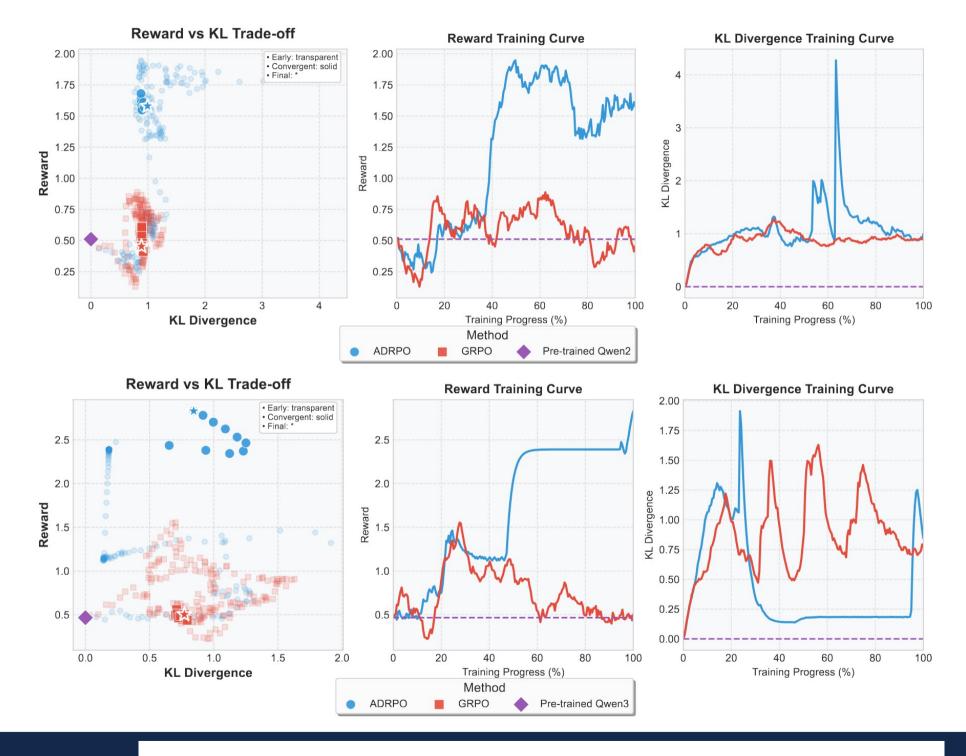
$$\mathcal{L}_{\text{ADRPO-GRPO}}(\theta) = \mathcal{L}_{\text{PG}}(\theta) + (\beta_0 - A_{\text{GRPO}}) \cdot D_{\text{KL}}(\pi_\theta || \pi_{\text{ref}})$$
 (7)

Here,  $\mathcal{L}_{PG}(\theta)$  is the clipped policy gradient term [32] (i.e.,  $-\min(A*\text{ratio}, A*\text{clip}(\text{ratio}, 1-\epsilon, 1+\epsilon))$  and ratio  $=\frac{\pi_{\theta}}{\pi_{\theta_{\text{old}}}}$ ),  $D_{\text{KL}}$  is the KL divergence, and  $\beta_0$  is a baseline regularization. The term  $(\beta_0 - A_{\text{GRPO}})$  acts as an adaptive coefficient, decreasing for good samples  $(A_{\text{GRPO}} > 0)$  to promote exploitation and increasing for poor samples  $(A_{\text{GRPO}} < 0)$  to enforce conservative exploration, allowing ADRPO-GRPO to achieve a better exploration-exploitation trade-off (See Fig. 4).



### LLM Post-Training (Improving GRPO)

Base Model: Qwen2/3
Reward Model: RM-Gemma-2B



## **Multi-Modal Reasoning Model**

Base Model: Qwen2.5-Omni Reward Model: **Verifiable** 

**Rewards** 

Table 2: Multi-modal audio reasoning results on MMAU benchmark [29].

| Method              | Sound (%) | Music (%) | Speech (%) | Total (%) |
|---------------------|-----------|-----------|------------|-----------|
| Qwen2.5-Omni (base) | 72.37     | 64.37     | 69.07      | 68.6      |
| GRPO                | 77.18     | 70.66     | 74.77      | 74.2      |
| Gemini 2.5 Pro      | 75.08     | 68.26     | 71.47      | 71.6      |
| GPT-4o Audio        | 64.56     | 56.29     | 66.67      | 62.5      |
| ADRPO (Ours)        | 81.98     | 70.06     | 75.98      | 76.0      |

Table 3: Ablation on advantage clipping ranges.

| Clipping Range                   | $A_{\min}$ | $A_{ m max}$ | Sound (%) | Music (%) | Speech (%) | Total (%) |
|----------------------------------|------------|--------------|-----------|-----------|------------|-----------|
| $1 \times \beta_0$ (recommended) | -0.04      | 0.04         | 81.98     | 70.06     | 75.98      | 76.0      |
| $2 \times \beta_0$               | -0.08      | 0.08         | 84.08     | 69.46     | 73.57      | 75.7      |
| $0.5 \times \beta_0$             | -0.02      | 0.02         | 82.58     | 71.26     | 74.47      | 76.1      |
| GRPO (baseline)                  | -          | -            | 77.18     | 70.66     | 74.77      | 74.2      |

# **Thanks**

