

Joint Velocity-Growth Flow Matching for Single-Cell Dynamics Modeling

Dongyi Wang ¹, Yuanwei Jiang ¹, Zhenyi Zhang ², Xiang Gu ¹, Peijie Zhou ², Jian Sun ¹

¹ School of Mathematics and Statistics, Xi'an Jiaotong University, China

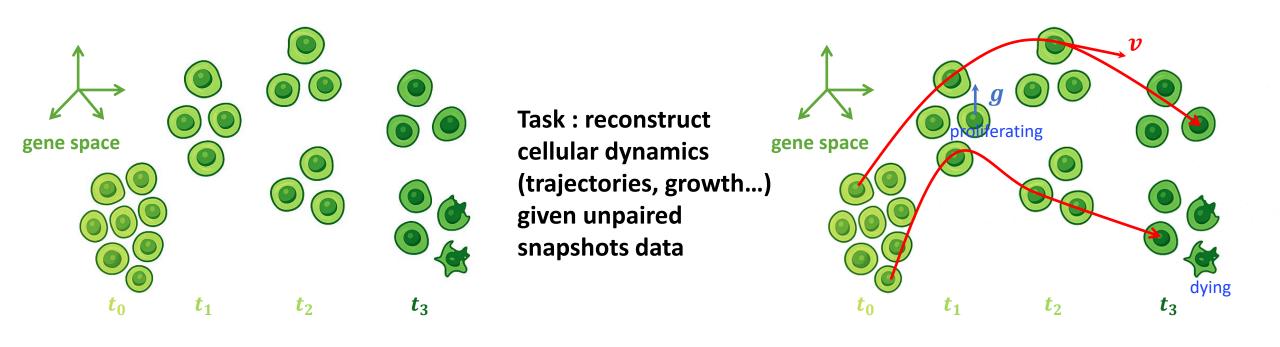
² School of Mathematical Sciences, Peking University, Beijing, China

Introduction

- Single-cell RNA seq can measure the gene expressions of individual cells.
- ...yet yields unpaired and unbalanced data.

destructive measurements

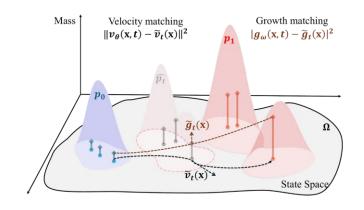
cell proliferation/death



Motivation

- Simulation-based models (eg. TIGON¹, DeepRUOT²)
 - > Explicitly models velocity field and growth rate.
 - > Require heavy numerical simulations and have difficulty scaling to high dimensions.
- Simulation-free models (eg. OT-CFM³, SF2M⁴)
 - Use flow matching to achieve better training efficiency and scalability.
 - > Only models velocity field, ignore the unbalanced nature of single-cell data.

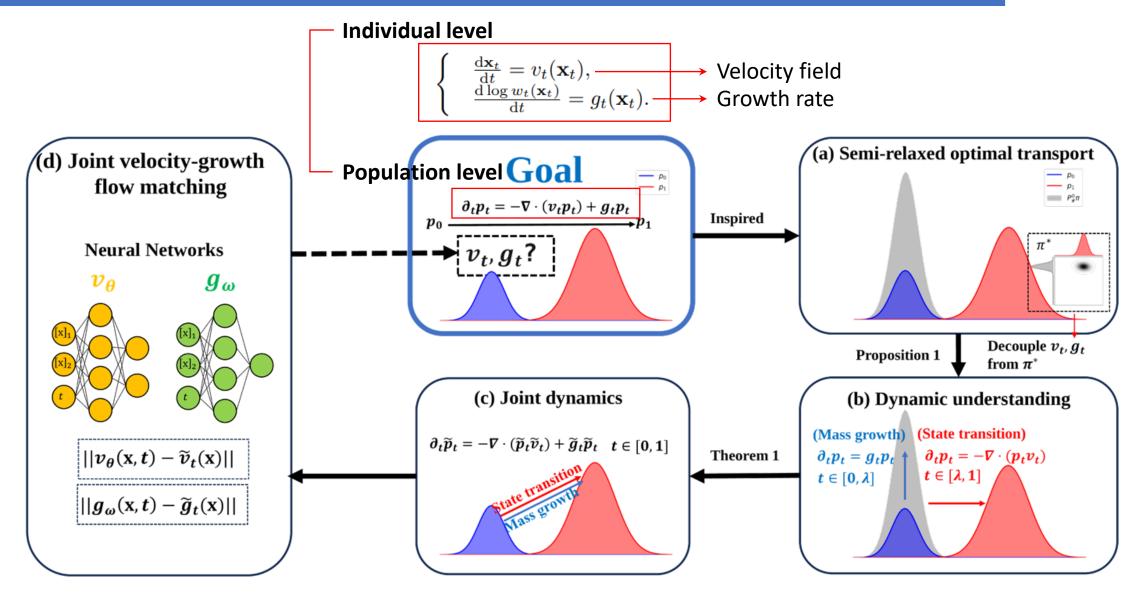
Can we develop a model which jointly learns the velocity field and growth rate of single-cell evolution by **flow matching?**



$$\begin{cases} & \frac{\mathrm{d}\mathbf{x}_t}{\mathrm{d}t} = v_t(\mathbf{x}_t), \longrightarrow & \text{Velocity field} \\ & \frac{\mathrm{d}\log w_t(\mathbf{x}_t)}{\mathrm{d}t} = g_t(\mathbf{x}_t). \longrightarrow & \text{Growth rate} \end{cases}$$

- [1] Sha et al., Reconstructing growth and dynamic trajectories from single-cell transcriptomics data. Nature Machine Intelligence, 2024.
- [2] Zhang et al., Learning stochastic dynamics from snapshots through regularized unbalanced optimal transport. ICLR, 2025.
- [3] Tong et al., Improving and generalizing flow-based generative models with minibatch optimal transport. TMLR, 2024.
- [4] Tong et al., Simulation-free Schrödinger bridges via score and flow matching. AISTATS, 2024.

Velocity-growth flow matching framework



Step 1: Two-period dynamic understanding of SOT

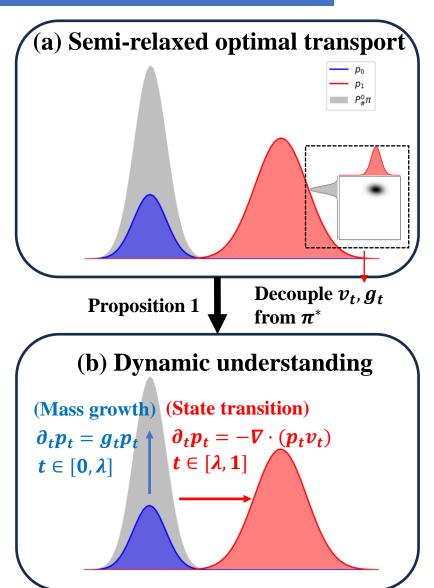
> Static formulation

$$\min_{\pi \geq 0} \mathcal{J}_{ ext{sot}}(\pi) riangleq \int_{\Omega^2} c(\mathbf{x}_0, \mathbf{x}_1) \, \mathrm{d}\pi(\mathbf{x}_0, \mathbf{x}_1) + \mathrm{KL}(\mathrm{P}^0_\# \pi \| p_0) \quad ext{s.t.} \quad \mathrm{P}^1_\# \pi = p_1$$

Proposition 1. Assume $c(\mathbf{x}_0, \mathbf{x}_1) = \|\mathbf{x}_0 - \mathbf{x}_1\|^2$ and if we enforce $P_\#^0 \pi$ and p_0 to share the same support for admissible solution π to problem (4), then we have $\min_{\pi} \mathcal{J}_{\text{sot}}(\pi) = \min_{v_t, g_t} \mathcal{J}_{\text{tpt}}^{\lambda}$ $(v_t, g_t), \forall \lambda \in (0, 1)$. Moreover, for any $\lambda \in (0, 1)$, given the optimal transport plan π^* to problem (4), let $p_{\lambda}^* \triangleq P_\#^0 \pi^*$, then π^* can be expressed as $\pi^* = (\operatorname{Id}, T^*)_\# p_{\lambda}^*$ where T^* is the Monge map between p_{λ}^* and p_1 . Meanwhile, there exist a g_t^* such that $p_{\lambda}^* = p_0(\mathbf{x})e^{\int_0^{\lambda} g_t^*(\mathbf{x})dt}$, and a v_t^* given by $v_t^* \left(\mathbf{x} + \frac{t-\lambda}{1-\lambda}(T^*(\mathbf{x}) - \mathbf{x})\right) = \frac{T^*(\mathbf{x}) - \mathbf{x}}{1-\lambda}$, satisfying $(v_t^*, g_t^*) \in \arg\min_{v_t, g_t} \mathcal{J}_{\text{tpt}}^{\lambda}(v_t, g_t)$.

Dynamic formulation

$$egin{aligned} \min_{(v_t,g_t)\in\mathcal{C}_{\lambda}(p_0,p_1)} \mathcal{J}_{ ext{tpt}}^{\lambda}(v_t,g_t) & riangleq (1-\lambda) \int_{\Omega} \int_{\lambda}^{1} p_t(ext{x}) \|v_t(ext{x})\|^2 \mathrm{d}t \mathrm{d} ext{x} + \mathcal{H}(g_t,p_t) \ \mathcal{H}(g_t,p_t) &= \int_{\Omega} p_0(ext{x}) (e^{\int_0^{\lambda} g_t(ext{x}) \mathrm{d}t} (\int_0^{\lambda} g_t(ext{x}) \mathrm{d}t - 1) + 1) \mathrm{d}x \ \mathcal{C}_{\lambda}(p_0,p_1) &= \{(v_t,g_t): \partial_t p_t = g_t p_t, t \in [0,\lambda]; \partial_t p_t = -
abla \cdot (p_t,v_t), t \in (\lambda,1] \} \end{aligned}$$



Step 2: Building joint unbalanced dynamics

The two-period evolution does not align with the behavior observed in biological systems. We want transport and growth occur simultaneously.

Theorem 1. Given the initial distribution p_0 , denote the ending distribution of the two-period dynamics

$$\partial_t p_t = g_t p_t, t \in [0, \lambda]; \quad \partial_t p_t = -\nabla \cdot (p_t v_t), t \in (\lambda, 1], \tag{7}$$

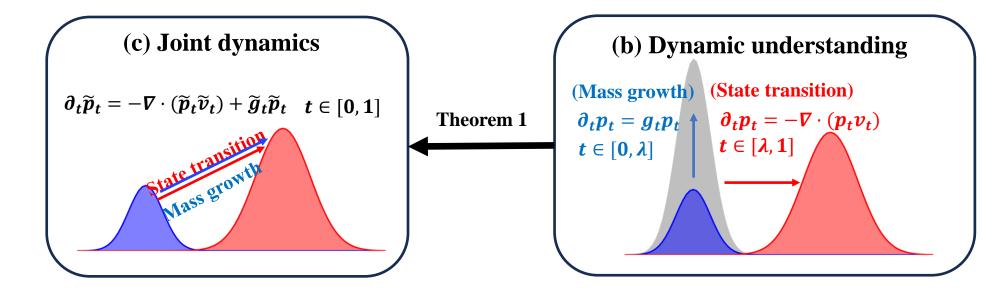
as p_1 , and denote the ending distribution of the joint dynamics starting from p_0

$$\partial_t \tilde{p}_t = -\nabla \cdot (\tilde{p}_t \tilde{v}_t) + \tilde{g}_t \tilde{p}_t, \quad t \in [0, 1], \quad \tilde{p}_0 = p_0, \tag{8}$$

as \tilde{p}_1 , then it holds that $\tilde{p}_1 = p_1$.

$$\tilde{v}_t(\mathbf{x}) = (1 - \lambda) \cdot v_{(1 - \lambda)t + \lambda}(\mathbf{x}),$$

$$\tilde{g}_t(\mathbf{x}) = \lambda \cdot g_{\lambda t} \left(\psi_{\tilde{v}, t}^{-1}(\mathbf{x}) \right),$$



Step 3: Regress velocity and growth by flow matching

By proposition 1 and theorem 1, we have

$$\tilde{v}_t(\psi_{\tilde{v},t}(\mathbf{x}_0)) = T^*(\mathbf{x}_0) - \mathbf{x}_0, \quad \tilde{g}_t(\psi_{\tilde{v},t}(\mathbf{x}_0)) = \log P_{\#}^0 \pi^*(\mathbf{x}_0) - \log p_0(\mathbf{x}_0), \text{ where } \mathbf{x}_0 \sim p_0.$$

$$\min_{\theta,\omega} \mathbb{E}_{\mathbf{x}_0} \mathbb{E}_t \left[\| v_{\theta}(\psi_{\tilde{v},t}(\mathbf{x}_0),t) - \tilde{v}_t(\psi_{\tilde{v},t}(\mathbf{x}_0)) \|^2 + |g_{\omega}(\psi_{\tilde{v},t}(\mathbf{x}_0),t) - \tilde{g}_t(\psi_{\tilde{v},t}(\mathbf{x}_0))|^2 \right]$$

In practice, we only have limited samples.

approximate the optimal transport plan by solving the entropy-regularized semi-relaxed transport problem using Sinkhorn-based algorithm

$$\pi^{0\to 1} = \arg\min_{\pi\geq 0} \sum_{i,j} c_{ij} \pi_{ij} + \epsilon H(\pi) + \tau \text{KL}(\pi \mathbf{1}_m || \mathbf{1}_n), \text{ subject to } \pi^{\top} \mathbf{1}_n = \mathbf{1}_m$$

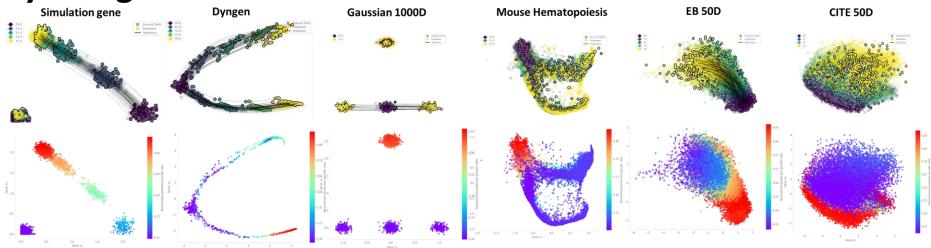
$$\mathcal{L}_{\text{VGFM}}(\theta, \omega) = \sum_{i=1}^{n} \sum_{j=1}^{m} \pi_{ij}^{0 \to 1} \mathbb{E}_{t} \left[\left\| v_{\theta}(\mathbf{x}_{t}, t) - (\mathbf{x}_{1}^{j} - \mathbf{x}_{0}^{i}) \right\|^{2} + \left| g_{\omega}(\mathbf{x}_{t}, t) - \log([\pi^{0 \to 1} \mathbf{1}_{m}]_{i}) \right|^{2} \right]$$

Incorporate few-steps distribution fitting loss (Wasserstein distance) to improve performance:

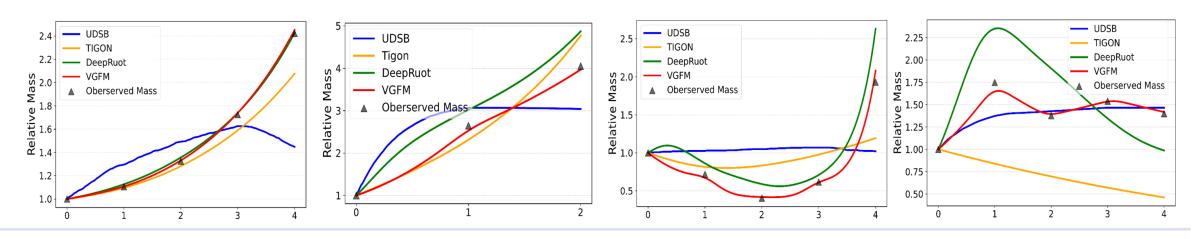
$$\mathcal{L}(heta,\omega) = \mathcal{L}_{ ext{VGFM}}(heta,\omega) + \mathcal{L}_{ ext{OT}}(heta,\omega)$$

Experiment

> Trajectory and growth reconstruction



Mass consistency



Experiment

Numerical results

Table 1: Mean W_1 and RME over all time on synthetic datasets. *OT-CFM and OT-MFM do not model the growth function, thus, RME is not computed. "N/C" means "not converge".

Method	Simulation Gene (2D)		Dyngen (5D)		Gaussian (1000D)	
	$\overline{\mathcal{W}_1}$	RME	$\overline{\mathcal{W}_1}$	RME	$\overline{\mathcal{W}_1}$	RME
OT-CFM* [22]	0.302	_	3.926	_	10.126	_
OT-MFM* [38]	0.311	_	3.976	_	11.008	_
UDSB [57]	0.665	0.192	1.914	0.658	N/C	N/C
TIGON [23]	0.099	0.065	1.029	0.542	N/C	N/C
DeepRUOT [26]	0.068	0.016	0.474	0.199	N/C	N/C
VGFM	0.046	0.006	0.420	0.053	3.010	0.037

Table A-9: W_1 and RME over all time on mouse hematopoiesis data. Part of the results were adopted from [26].

Models	t	1	t_2		
	$\overline{\mathcal{W}_1}$	RME	$\overline{\mathcal{W}_1}$	RME	
SF ² M [41]	0.167	_	0.190	_	
uAM[44]	0.745	_	0.777	_	
UDSB [57]	0.388	0.159	0.128	0.249	
TIGON [23]	0.314	0.124	0.342	0.177	
DeepRUOT [26]	0.145	0.140	0.132	0.202	
VGFM	0.115	0.043	0.094	0.019	

Table 3: Ablation study on EB (50D) dataset. For comparison, we also report the results of the SOTA approach DeepRUOT [26] in this table.

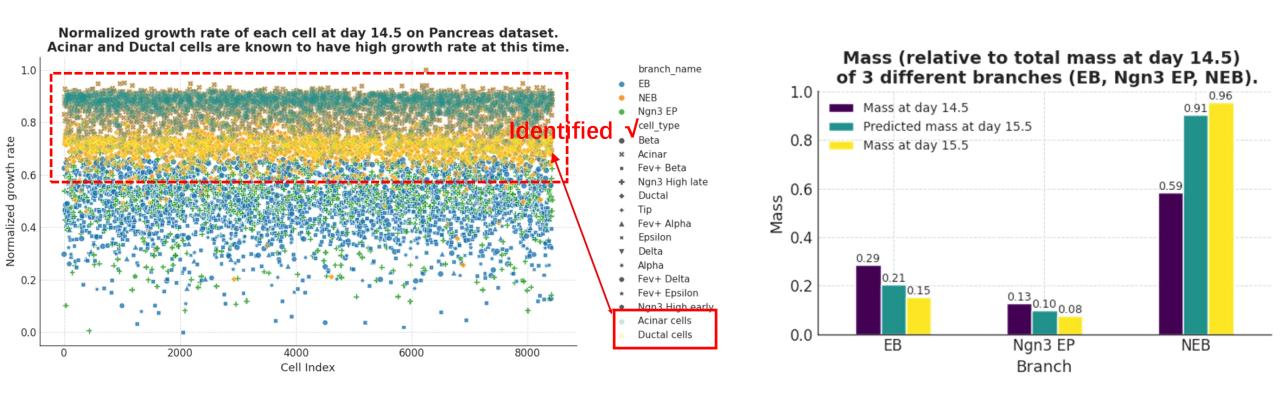
Method	t_1		t_2		t_3		t_4		Training time
	\mathcal{W}_1	RME	\mathcal{W}_1	RME	\mathcal{W}_1	RME	\mathcal{W}_1	RME	<u></u>
DeepRUOT [26]	8.169	0.416	9.041	0.415	9.348	0.119	9.808	0.296	90 (mins)
VGFM (w/o $\mathcal{L}_{\mathrm{OT}}$)	8.915	0.020	10.590	0.098	10.915	0.067	11.635	0.088	6 (mins)
VGFM (w/o $\mathcal{L}_{\mathrm{VGFM}}$)	8.644	0.650	10.167	0.710	11.052	0.823	11.530	0.862	62 (mins)
VGFM	7.951	0.089	8.747	0.042	9.244	0.019	9.620	0.044	13 (mins)
VGFM (*)	7.902	0.018	8.767	0.013	9.063	0.083	9.507	0.096	9 (mins)

Table 2: Mean hold-one-out results on EB and CITE datasets over hold-out times.

Method	EB	CITE		
11201104	5D	5D	50D	
OT-CFM [22]	0.790	0.882	38.756	
$SF^{2}M$ [41]	0.793	0.920	38.524	
UDSB [57]	1.206	2.023	44.168	
OT-MFM [38]	0.713	0.724	36.394	
DeepRUOT [26]	0.774	0.845	38.681	
VGFM	0.676	0.745	37.386	

Experiment

\succ Interpretation of $g_{\omega}(x,t)$: Pancreas dataset (2000-dimensions)



VGFM Successfully reconstructed cell type-wise growth rate without being given any prior knowledge of the cell types.

Thanks for your attention!

https://github.com/DongyiWang-66/VGFM

dongyiwang@stu.xjtu.edu.cn

Code

Paper

