From Indicators to Insights: Diversity-Optimized for Medical Series-Text Decoding via LLMs

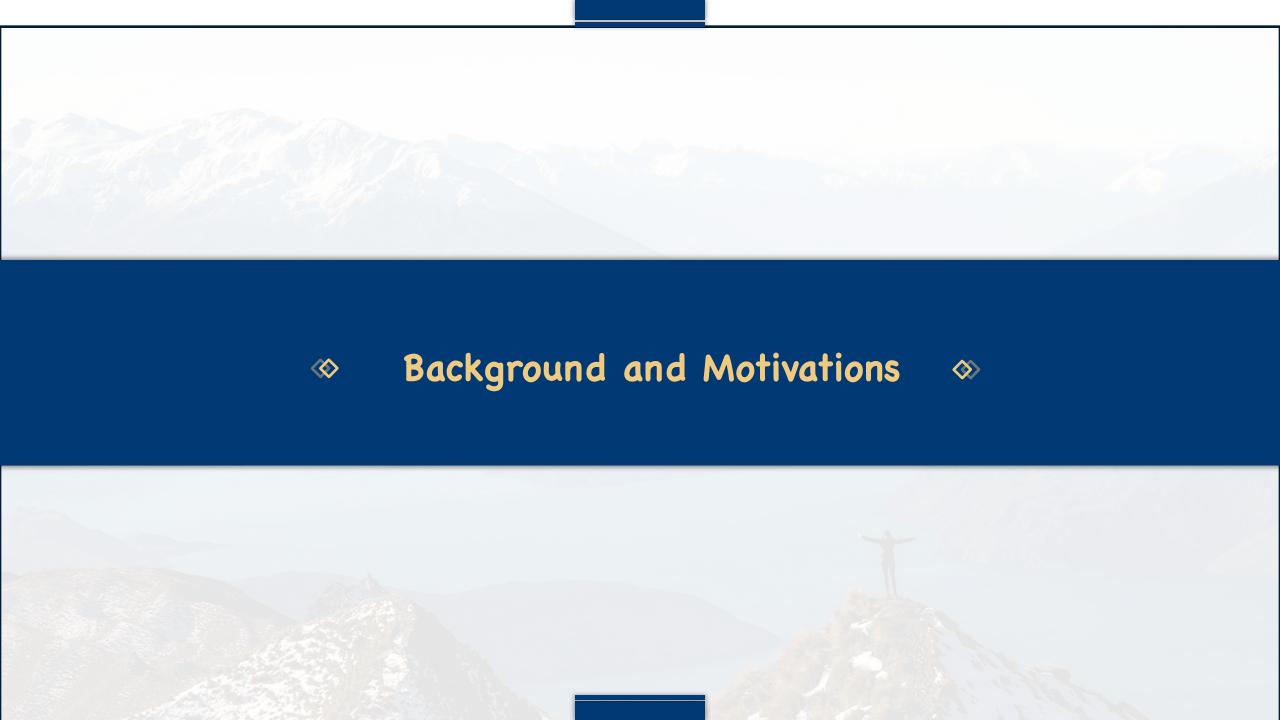
Xiyuan Jin, Jing Wang*, Ziwei Lin, Qianru Jia, Yuqing Huang, Xiaojun Ning, Zhonghua Shi, Youfang Lin

Beijing Jiaotong University, China

Capital Medical University, China

2025.11.04

https://github.com/jinxyBJTU/InDiGO



From Pattern Recognition to Physiological Understanding

Regular Time Series

- Physically or mechanically generated (e.g., weather, traffic)
- Stable statistical patterns, often stationary
- Approximate prediction acceptable

VS.

Nature of signals

Data consistency

Error tolerance

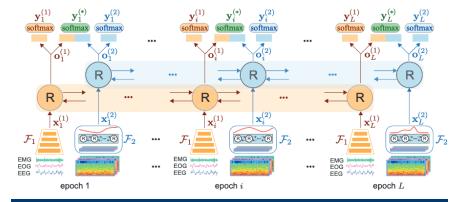
Medical Time Series

- Biophysiological and multisource (e.g., EEG, ECG, EMG)
- High inter-subject variability, non-stationary dynamics
- Misinterpretation may lead to clinical risk

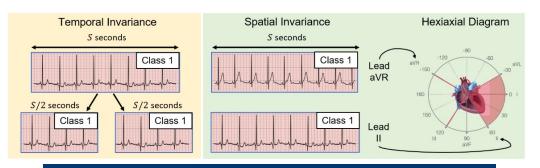
Medical time series transform pattern recognition into **knowledge-driven interpretation** — where data must be understood within its physiological context.

⋄ Motivations **⋄**

Early knowledge integration in medical modeling:

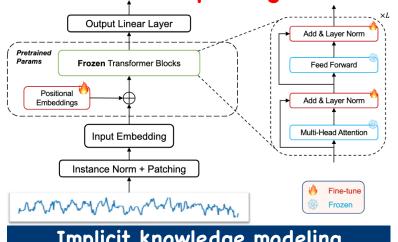


Task-specific module design

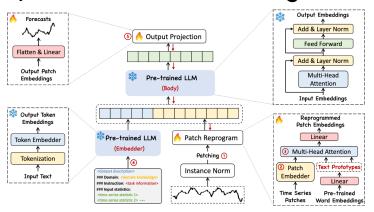


Task-agnostic loss design

LLMs have become a new paradigm due to their efficient ability to transform knowledge



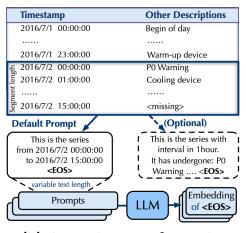
Implicit knowledge modeling Explicit knowledge encoding

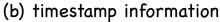


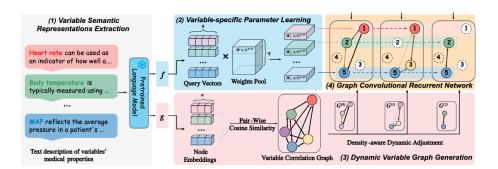
Limited inspiration for decision-making

<dataset description>
Domain: <domain knowledge>
Instruction: <task information>
Input statistics:
<time series statistic 1>
<time series statistic 2> •••

(a) dataset descriptions and sample statistics







(c) time-varying inter-variable dependencies

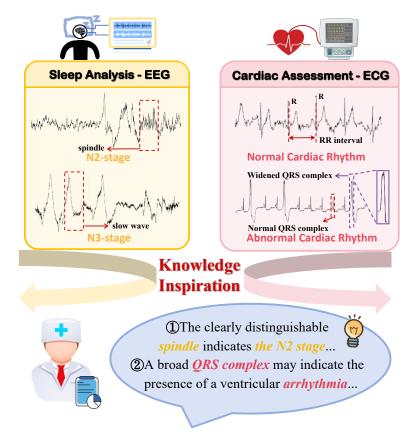


Figure 1: Task-relevant indicators provide critical cues for physiological state interpretation in sleep analysis and cardiac assessment

Chanllenges

- What kinds of promptable knowledge are most effective for decoding medical time series?
 - Existing prompts lack task-specific, discriminative cues that experts actually rely on.
 The challenge is to identify what type of knowledge truly drives physiological interpretation.
- How to robustly integrate time series and suboptimal text prompts?
 - Text prompts may be incomplete or inaccurate.
 - A robust model must still align and learn meaningful cross-modal representations even when the textual guidance is noisy or partially wrong.

InDiGO — designed to integrate indicator-guided prompts and optimize their diversity and alignment through an evolutionary learning process.

InDIGO — Indicator-informed Diversity-Guided Optimization

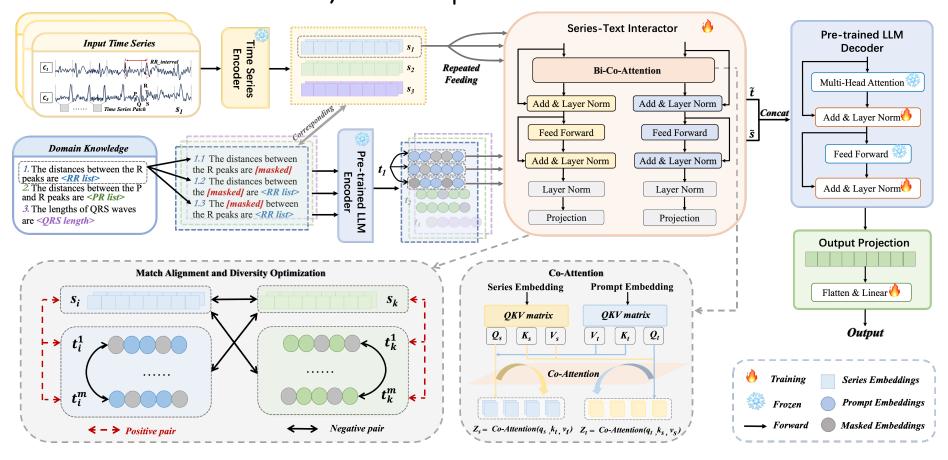


Figure 1: Overview of InDiGO. Given medical time series and initial texts, we apply mask-based importance sampling and pre-trained encoders to extract features. A series-text interactor captures relevance, followed by alignment and diversity optimization to identify the optimal combination.

Method ⋄

Step 1: Indicator-Guided Prompt Prototype Construction

LLM predicts the target conditioned on both the series and a text prompt:

$$P_{\text{LLM}}(Y) = \mathbb{E}_{(s,t) \sim P(s,t)} \left[P_{\text{LLM}}(Y|s,t) \right] \approx \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{t \sim P(t|s_i)} \left[P_{\text{LLM}}(Y|s_i,t) \right]$$

In practice, we approximate the whole text distribution with a single suboptimal text \rightarrow this introduces bias

$$P_{\text{LLM}}(Y) = \mathbb{E}_{(s,t) \sim P(s,t)} \left[P_{\text{LLM}}(Y|s,t) \right] \approx \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{t \sim P(t|s_i)} \left[P_{\text{LLM}}(Y|s_i,t) \right]$$
$$\text{Bias}(\hat{\mathcal{M}}) = \mathbb{E}[P_{LLM}(y_i|s_i,t)P(t|s_i)] - \int P_{LLM}(y_i|s_i,t)P(t|s_i)dt$$

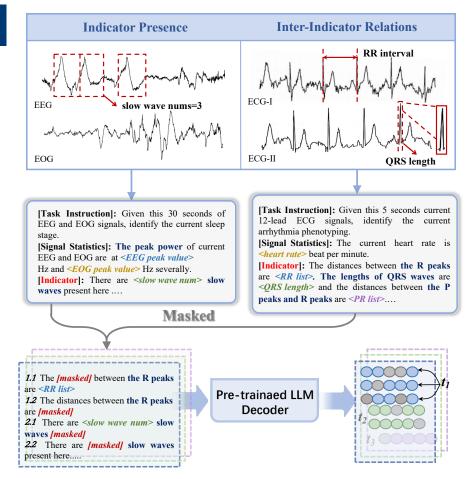


Figure 3: Scene-specific indicator prompting via semi-automated extraction.

Method 🗇

Step 2: Masked Monte Carlo Importance Sampling

 $\text{Marginal likelihood:} \qquad \hat{\mathcal{M}} = \int P_{\text{LLM}}(y_i|s_i,t)q(t|t_i^0) \frac{P(t|s_i)}{q(t|t_i^0)} dt \approx \frac{1}{m} \sum_{j=1}^m P_{\text{LLM}}(y_i|s_i,t_i^j) \frac{P(t_i^j|s_i)}{q(t_i^j|t_i^0)}$

Optimal Text Prompt: $t_i^* = \operatorname*{argmax}_{t_i}[\log P_{\mathrm{LLM}}(y_i|s_i,t_i) + \log P(t_i|s_i) - \log q(t_i|t_i^0)]$

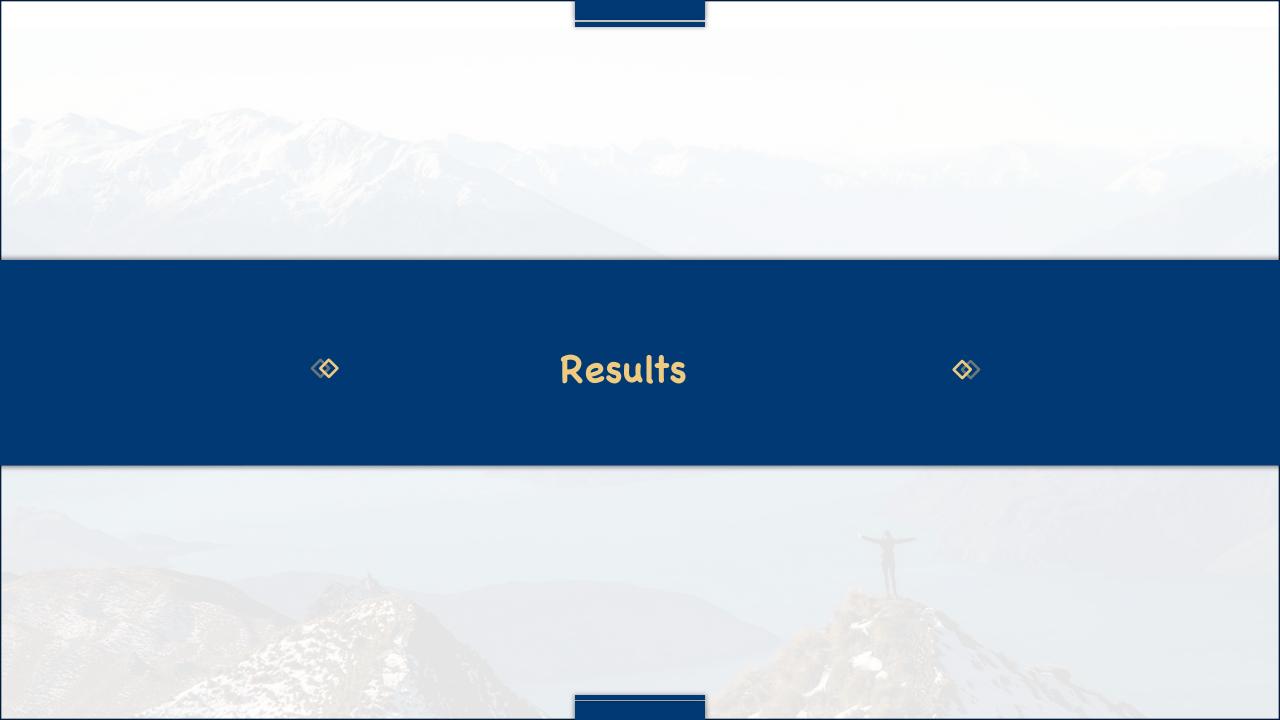
Random Masking Operation: $\mathcal{D}^{t_i} = \{t_i^j | t_i^{j,1}, t_i^{j,2}, \dots, t_i^{j,L_{t_i}}; j=1,\dots,m\}$

Step 3: Match Alignment + Diversity Optimization

Series-Text Interaction: $(\mathbf{z}_s, \mathbf{z}_t) = \operatorname{BiCoAttn}(\mathbf{s}, \mathbf{t}) = \left(\operatorname{softmax}\left(\frac{\mathbf{q}_s \mathbf{k}_t^{\top}}{\sqrt{d}}\right) \mathbf{v}_t, \operatorname{softmax}\left(\frac{\mathbf{q}_t \mathbf{k}_s^{\top}}{\sqrt{d}}\right) \mathbf{v}_s\right)$

Alignment and Diversity Optimization:

$$\mathcal{L}_{\text{objective}} = \mathbb{E}_{t_i^j \sim q(t|t_i^0)} \left[-\log P(s_i|t_i^j) \right] - H(q(t|t_i^0))$$



Results 🗇

Methods	Sleep-EDF-20			Sleep-EDF-78		
	Acc.	Macro F1	Kappa	Acc.	Macro F1	Kappa
TF-C [48]	55.42 ±1.39	26.04 ±0.21	30.74 ±1.52	53.90 ±4.03	26.00 ±2.09	29.32 ±6.43
SimMTM [7]	66.91 ±1.89	53.21 ± 1.95	53.25 ± 2.02	63.06 ± 2.67	57.07 ± 2.13	53.07 ± 3.42
OneFitsAll 49	72.60 ± 1.51	61.61 ± 5.80	61.81 ± 3.50	68.50 ± 2.19	54.24 ± 1.96	55.21 ± 3.07
Time-LLM [12]	80.31 ± 2.63	71.64 ± 3.02	70.22 ± 2.84	78.08 ± 2.96	66.09 ± 3.25	68.04 ± 3.14
KEDGN [24]	74.89 ± 3.86	64.29 ± 3.36	64.90 ± 5.46	70.34 ± 1.85	58.59 ± 2.74	57.47 ± 2.56
MiniRocket [5]	81.60 ± 1.55	72.82 ± 2.01	72.79 ± 1.96	78.36 ± 1.93	70.18 ± 2.35	69.46 ± 2.46
BIOT [45]	81.86 ± 4.41	75.29 ± 4.47	75.14 ± 6.00	77.15 ± 3.04	69.36 ±4.13	68.26 ± 4.36
TinySleepNet [38]	83.64 ±2.31	77.54 ±2.55	77.63 ±2.29	83.49 ±2.24	76.64 ±2.61	76.41 ±2.59
XSleepNet [32]	80.93 ± 2.34	76.71 ± 2.59	74.31 ± 2.32	81.83 ± 2.30	75.28 ± 2.66	75.44 ± 2.37
L-SeqSleepNet [33]	82.90 ± 2.12	74.90 ± 2.22	76.47 ± 2.24	80.84 ± 2.18	72.67 ± 2.38	74.94 ± 2.51
SleepHGNN [10]	81.15 ± 1.96	72.88 ± 2.17	73.35 ± 2.16	77.35 ± 2.13	69.56 ± 2.39	68.65 ± 2.41
SleepKD [21]	82.44 ± 2.40	74.11 ± 2.72	76.87 ± 2.63	80.19 ± 2.85	72.65 ± 2.84	74.86 ± 2.93
SleepDG [42]	81.92 ± 2.27	74.74 ± 2.53	76.43 ± 2.47	79.95 ± 2.42	72.21 ± 2.59	74.16 ± 2.68
Brant-X [47]	84.58 ± 1.98	77.63 ± 2.13	79.29 ±2.18	82.84 ± 2.21	77.04 ± 2.30	76.67 ± 2.49
InDiGO	89.04 ±1.80	80.53 ±1.77	84.91 ±2.51	86.79 ±1.90	81.12 ±1.88	81.60 ±2.89

Table 1: 5-fold cross-validated average results for sleep stage classification

Results 🗇

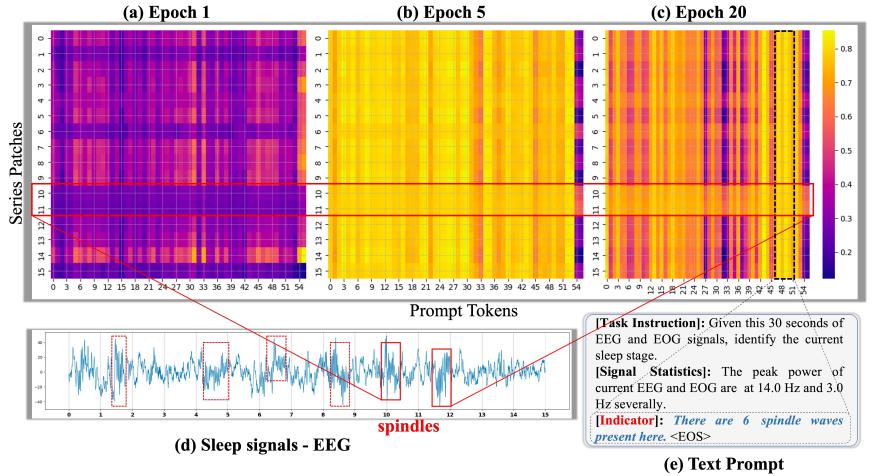


Figure 6: A showcase of series-text correlation with network training. (a)-(c) represent the co-attention scores of the series-text pair, (d) and (e) represent the series and text samples.

Thank you for your listening!

Xiyuan Jin xiyuanjin@bjtu.edu.cn

2025.11.04