

ControlFusion: A Controllable Image Fusion Network with Language-Vision Degradation Prompts

Linfeng Tang^{1*}, Yeda Wang^{1*}, Zhanchuan Cai², Junjun Jiang³, Jiayi Ma^{1†}

¹Wuhan University 2 Macau University of Science and Technology 3 Harbin Institute of Technology

*Equal Contribution †Corresponding Author

This work was supported by National Natural Science Foundation of China (No. 62276192).

Goal: To synergize the complementary strengths of both modalities: integrating the rich textural details of visible imagery with the salient thermal targets of infrared data.

Imaging Wavelenth

Imaging Principle

Advantages

Limitations

Examples

Visible Modality

380-780 nm

Reflection-based Imaging

- ✓ Clear texture and apperence
- Severe information loss under poor lighting conditions or in the presence of camouflage

Infrared Modality

8-14 µm

Thermal Radiation Imaging

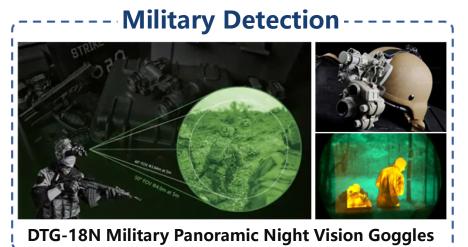
- ✓ Highlights thermal targets (e.g., humans, vehicles)
- High noise levels, blurred details, and poor visual quality (lack of texture)

NEURAL INFORMATION PROCESSING SYSTEMS

□ Introduction & Motivation

BROAD APPLICATION SCOPE

Safety


Reliability

24-Hour Availability

Targeting complex environments, not just lab benchmarks

QuadSight Night Driving Assistance System

Urban Security

PTV-R Intelligent Security Surveillance System

Intelligent Industry ...

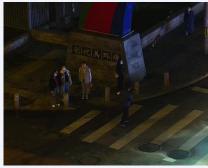
UAV Multimodal Industrial Inspection Platform

High quality scenarios

Sensor

Weather

Illumination

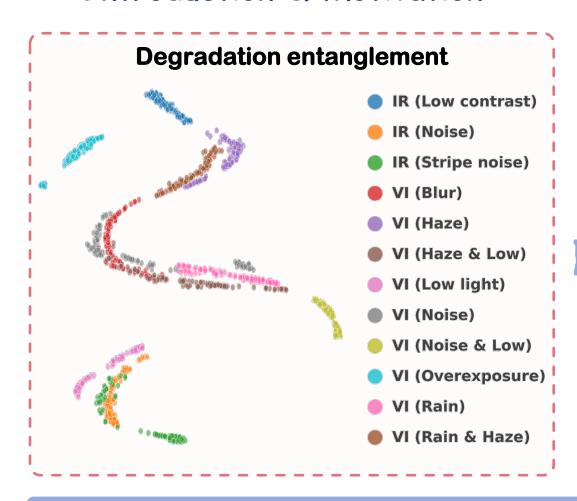


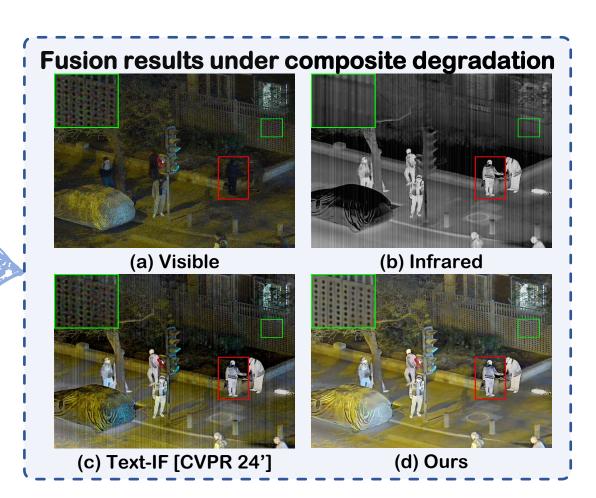
Fusion results in degradation scenarios

(b) Infrared

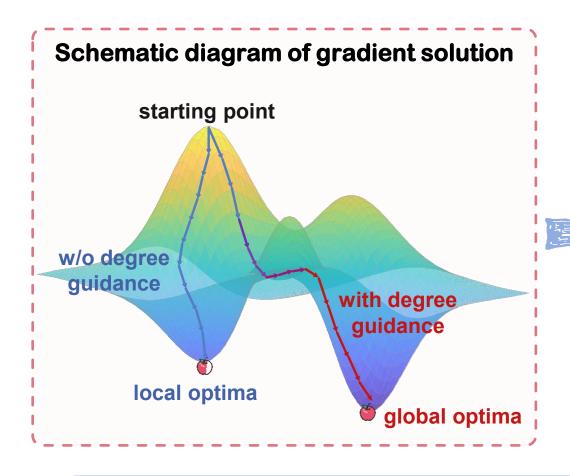
(d) Ours

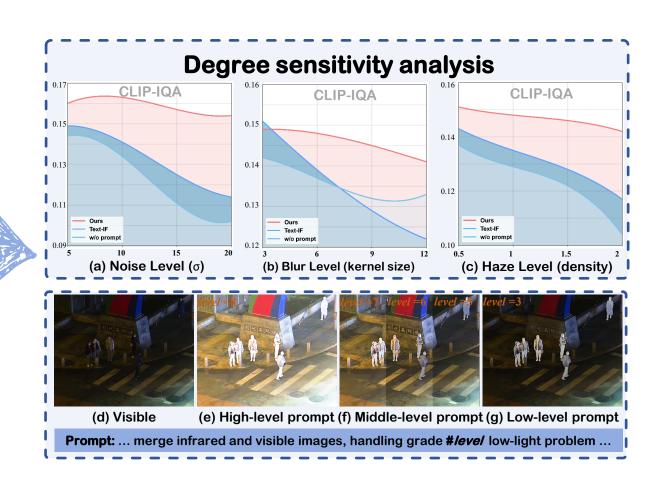
Complex interference scenarios





Vulnerability of SOTA methods to degradation scenarios



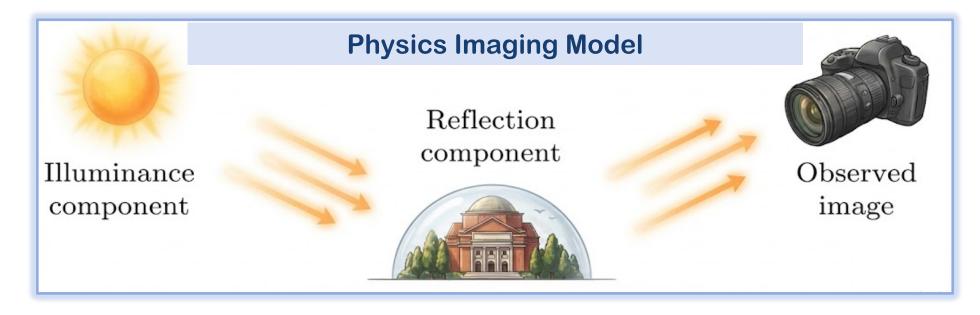


Degradation entanglement causes failure in degradation-aware models



Existing restoration-fusion methods overlooking the **domain gap** between **simulated** data and **realistic** images, which hampers their generalizability in practical scenarios

Existing methods are tailored for **specific** or **single** types of degradation, making them **ineffective** in handling more **complex composite degradations**



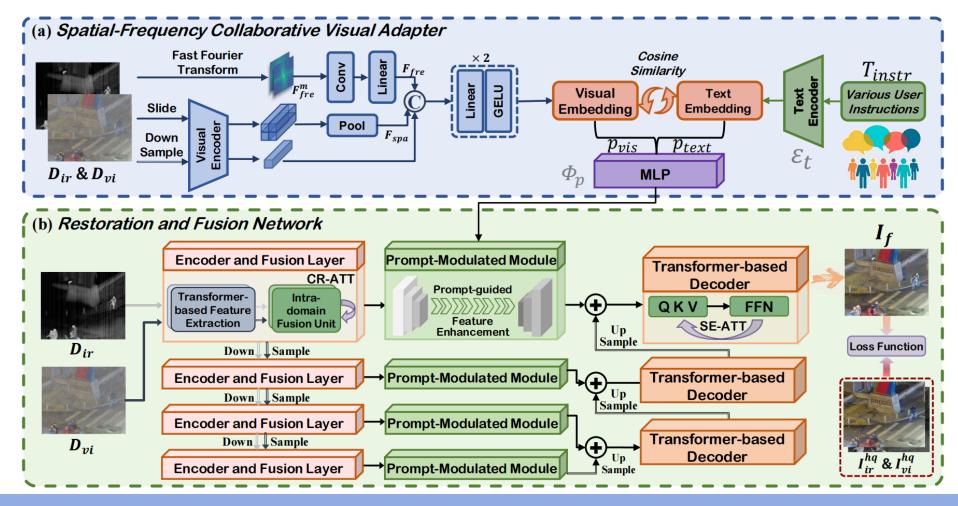
Existing methods **lack degradation level modeling**, causing a sharp decline in performance as degradation **intensifies**

■ Methodology — Physics-driven Degraded Imaging Model

Physics-driven
Degraded
Imaging Model

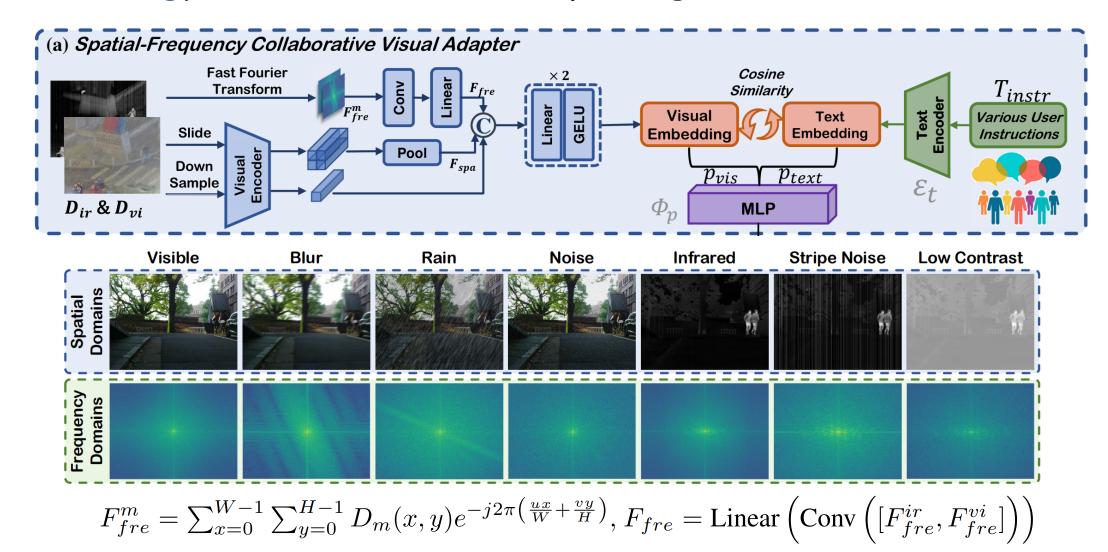
Stripe Noise: $D_{ir}^s = \mathcal{P}_s(I_{ir}) = lpha \cdot I_{ir} + \mathbf{1}_H \mathbf{n}^ op,$

• Blur&Noise: $D_m^s = \mathcal{P}_s(I_m) = I_m * K(N, \theta) + \mathcal{N}(0, \sigma^2),$

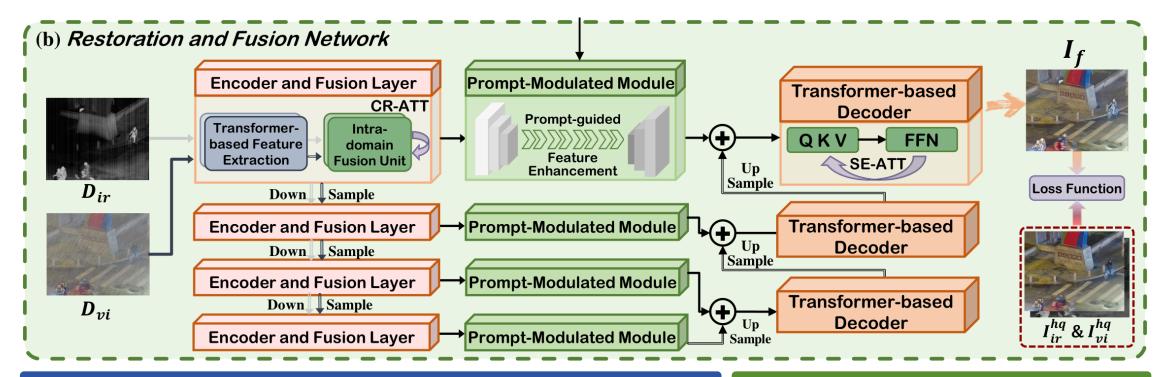

• Weather Related Degradation: $D_{vi}^w = \mathcal{P}_w(I_{vi}) = I_{vi} \cdot t + A(1-t) + R$,

lllumination Degradation: $D_{vi}^i = \mathcal{P}_i(I_{vi}) = rac{I_{vi}}{L} \cdot L^\gamma,$

■ Methodology — Overall Framework



Overall framework of our controllable image fusion network


■ Methodology — Textual-Visual Prompts Alignment

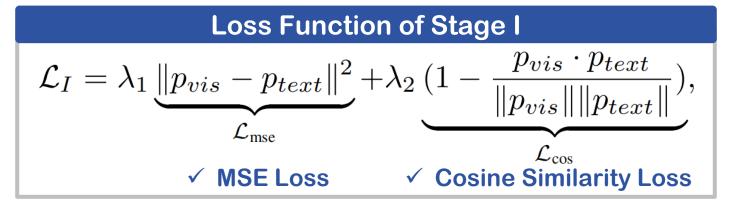
■ Methodology — Prompt-modulated Restoration and Fusion

Feature Aggregation

$$\{Q_{ir}, K_{ir}, V_{ir}\} = \mathcal{F}_{ir}^{qkv}(F_{ir}), \{Q_{vi}, K_{vi}, V_{vi}\} = \mathcal{F}_{vi}^{qkv}(F_{vi}).$$

$$F_f^{ir} = \operatorname{softmax}\left(\frac{Q_{vi}K_{ir}}{\sqrt{d_k}}\right)V_{ir}, F_f^{vi} = \operatorname{softmax}\left(\frac{Q_{ir}K_{vi}}{\sqrt{d_k}}\right)V_{vi},$$

Feature Modulation


$$[\gamma_p, \beta_p] = \Phi_p(p)$$

$$\hat{F}_f = (1 + \gamma_p) \odot F_f + \beta_p$$

■ Methodology — Loss Function

Loss Function of Stage II

$$\mathcal{L}_{II} = \alpha_{int} \cdot \mathcal{L}_{int} + \alpha_{ssim} \cdot \mathcal{L}_{ssim} + \alpha_{grad} \cdot \mathcal{L}_{grad} + \alpha_{color} \cdot \mathcal{L}_{color}$$

✓ Intensity Loss

$$\mathcal{L}_{int} = \frac{1}{HW} \| I_f - \max(I_{ir}^{hq}, I_{vi}^{hq}) \|_1$$

√ SSIM Loss

$$\mathcal{L}_{ssim} = 2 - (\text{SSIM}(I_f, I_{ir}^{hq}) + \text{SSIM}(I_f, I_{vi}^{hq})) \qquad \mathcal{L}_{color} = \frac{1}{HW} \|\mathcal{F}_{CbCr}(I_f) - \mathcal{F}_{CbCr}(I_{vi}^{hq})\|_1$$

✓ Maximum Gradient Loss

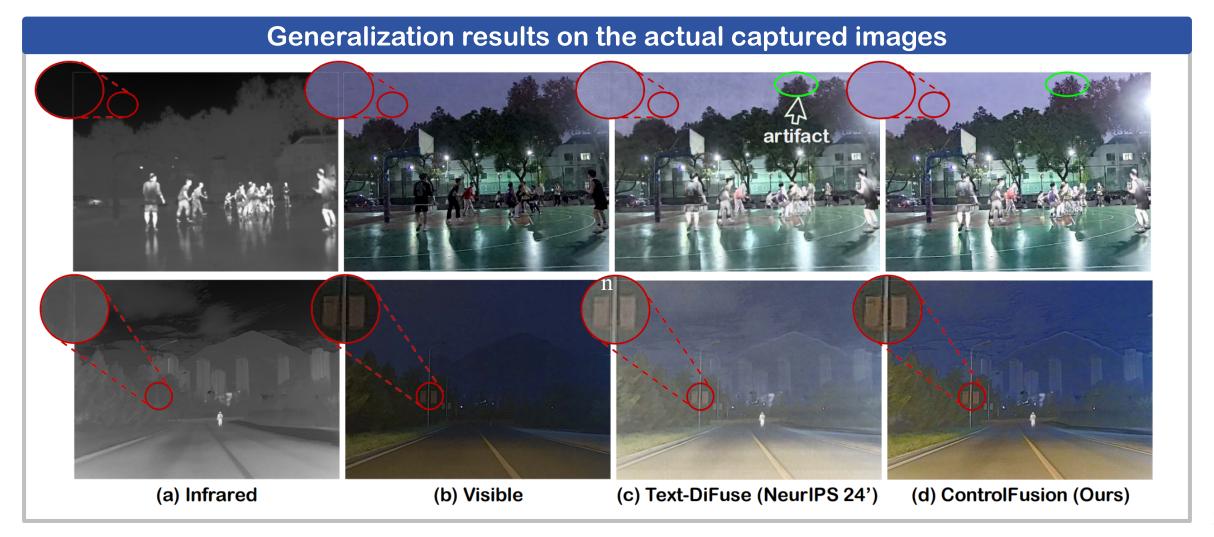
$$\mathcal{L}_{grad} = \frac{1}{HW} \|\nabla I_f - \max(\nabla I_{ir}^{hq}, \nabla I_{vi}^{hq})\|_1$$

✓ Color Loss

$$\mathcal{L}_{color} = \frac{1}{HW} \| \mathcal{F}_{CbCr}(I_f) - \mathcal{F}_{CbCr}(I_{vi}^{hq}) \|_1$$

□ Experimental Analysis — Visualized Fusion Results on Challenging Scenarios

Fusion results on real world challenging scenarios SegMiF Visible Infrared **DDFM LRRNet** (ICCV 23') (ICCV 23') (Deg.\ En.) (Deg.\ En.) **(TPAMI 23') DRMF EMMA Text-IF Text-DiFuse** ControlFusion (CVPR 24') (Neurips 24') (Ours) (ACMMM 24') (CVPR 24') 13


□ Experimental Analysis — Visualized Fusion Results on Challenging Scenarios

Fusion results on real world challenging scenarios **DDFM LRRNet** SegMiF **DRMF EMMA** Text-IF **Text-DiFuse** ControlFusion (ICCV 23') (ICCV 23') (ACMMM 24') (CVPR 24') (CVPR 24') (NeurIPS 24') (TPAMI 23') (Ours)

□ Experimental Analysis — Generalization Results on Actual Captured Images

□ Experimental Analysis — Quantitative Results on Single Degradation

Four Challenging Degradation Scenarios

- VI (Blur): Motion or focus blur.
- ♦ VI (Rain): Weather interference.
- VI (Low Light): Poor illumination conditions.
- VI (Over-exposure): High dynamic range issues.

Conclusion: Our ControlFusion achieves State-of-the-Art performance on almost all metrics, proving superior robustness.

Methods		VI (Bl	ur)		VI (Rain)				
	CLIP-IQA MUSIQ TReS SD CLIP-IQA MUSIQ 0.141 39.421 39.047 35.411 0.191 38.886 0.128 40.739 40.968 40.722 0.174 48.164 0.131 43.472 41.744 42.553 0.185 43.924 0.163 43.081 37.268 45.399 0.185 43.291 0.152 43.005 43.516 44.000 0.195 40.528 0.164 44.801 46.542 48.401 0.164 41.287	TReS	SD						
DDFM	0.141	39.421	39.047	35.411	0.191	38.886	46.285	36.376	
\mathbf{DRMF}	0.128	40.739	40.968	40.722	0.174	48.164	48.565	41.174	
\mathbf{EMMA}	0.131	43.472	41.744	42.553	0.185	43.924	44.916	43.378	
LRRNet	0.163	43.081	37.268	45.399	0.185	43.291	41.891	46.285	
\mathbf{SegMiF}	0.152	43.005	43.516	44.000	0.195	40.528	49.094	44.274	
Text-IF	0.164	44.801	46.542	48.401	0.164	41.287	47.380	49.298	
Text-DiFuse	0.172	44.958	47.699	46.376	0.173	39.243	50.017	47.297	
ControlFusion	\bigcirc 0.184	$\boxed{47.848}$	$\boxed{50.240}$	$\boxed{50.287}$	0.196	$\boxed{52.311}$	$\fbox{52.465}$	$\boxed{50.901}$	

DDFM DRMF EMMA LRRNet SegMiF Text-IF	V	I (Low lig	ght, LL)		VI (Over-exposure, OE)				
	CLIP-IQA	MUSIQ	TReS	SD	CLIP-IQA	MUSIQ	TReS	SD	
DDFM	0.156	39.495	41.782	31.759	0.143	43.167	43.440	32.099	
\mathbf{DRMF}	0.143	41.428	37.947	38.287	0.190	43.334	42.582	44.256	
\mathbf{EMMA}	0.158	39.674	44.827	40.857	0.180	46.731	47.616	40.242	
\mathbf{LRRNet}	0.164	40.486	34.836	41.639	0.160	42.548	48.414	42.190	
\mathbf{SegMiF}	0.177	41.073	46.376	44.829	0.166	49.132	38.019	38.484	
Text-IF	0.163	41.096	49.174	47.287	0.172	40.298	45.999	47.330	
${\bf Text\text{-}DiFuse}$	0.192	44.734	50.126	49.883	0.183	39.095	49.596	50.279	
ControlFusion	<u>Q</u> 0.183	$\boxed{48.420}$	$\boxed{51.072}$	$\boxed{53.787}$	0.191	50.301	$\boxed{52.961}$	$\boxed{54.218}$	

□ Experimental Analysis — Quantitative Results on Compound Degradations

Compound Degradation Scenarios

- **OE + LC:** Visible Over-exposure mixed with IR Low-contrast issues.
- LN: Extreme Low-light conditions corrupted by Heavy Noise.
- **RH + RN:** Rain/Haze and Noise interference affecting both sensors.
- LL + SN: Visible Low-light coupled with IR Stripe Noise.

Observation: Even with dual-sensor impairments, our ControlFusion maintains superior stability and quality.

Methods	V	I (OE) and	d IR (LC)		VI (Low light and Noise, LN)					
Titellous .	CLIP-IQA	MUSIQ	TReS	SD	CLIP-IQA	MUSIQ	TReS	EN		
DDFM	0.168	43.814	41.894	36.095	0.172	48.293	31.791	6.298		
DRMF	0.184	42.399	39.374	40.847	0.201	44.363	43.063	5.875		
EMMA	0.130	39.892	42.076	43.362	0.174	42.201	43.382	5.838		
LRRNet	0.136	47.209	42.636	46.684	0.144	46.386	35.779	7.306		
SegMiF	0.114	44.021	42.256	33.647	0.136	49.178	38.570	5.819		
Text-IF	0.174	48.808	47.998	48.848	0.217	48.100	47.510	5.204		
Text-DiFuse	0.131	49.021	50.980	47.640	0.185	50.775	48.610	6.440		
ControlFusion	0.187	50.479	50.298	50.955	0.225	49.333	49.513	7.111		

DRMF EMMA LRRNet SegMiF Text-IF	V	I (RH) and	d IR (RN)		VI (LL) and IR (SN)				
	CLIP-IQA	MUSIQ	TReS	SD	CLIP-IQA	MUSIQ	TReS	EN	
DDFM	0.151	33.440	32.134	37.342	0.189	36.433	42.630	5.776	
DRMF	0.174	43.663	43.858	37.997	0.142	38.241	41.049	5.280	
EMMA	0.165	39.146	44.458	51.205	0.130	37.367	43.888	6.318	
LRRNet	0.128	47.954	36.831	49.917	0.154	38.426	35.970	7.007	
SegMiF	0.147	42.354	39.156	31.717	0.151	41.287	37.079	6.767	
Text-IF	0.158	45.821	47.626	46.543	0.140	41.429	46.220	5.525	
Text-DiFuse	0.181	48.645	48.937	38.808	0.161	47.734	48.448	6.738	
ControlFusion	0.179	50.107	51.091	55.417	0.167	50.632	48.971	7.055	

□ Experimental Analysis — Fusion Results with Various Level Prompts

Dynamic Adaptation

Handles wide spectrum (low-light to over-exposure)

Prompt-Driven Control

Adjust strength via specific prompt levels (level=7/8/9)

Superior Robustness

high-quality fusion in compromised environments

Prompt Template: " ... merge infrared and visible images, handling grade #level low-light/over exposure problem ... "

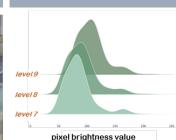
Ours (level=7/9)

Low-Light

Scenario

Input IR/VI

Text-DiFuse

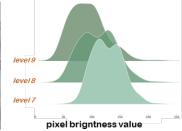


Ours (level=8)

Ours (level=9/7)

Brightness Distribution

Over-Exposure Scenario



□ Experimental Analysis — Scaling-up

Prompt Density Scaling

Validating extensibility by increasing degradation prompt density from 2 levels to 4 levels during training.

Performance Trend

As the diversity of prompt levels increases, the model consistently achieves higher scores across all evaluation metrics.

Observation: Capitalizing on richer supervision, the framework demonstrates favorable scaling properties, driven by higher prompt diversity.

Comparison of models trained with varying degradation levels in real-world datasets

Methods	FN	IB (Dat	aset 1)	LLVIP (Dataset 2)				
	2 (1,10)	2 (4,7)	7) 4 (1,4,7,10) 2 (1,10) 2 (4,7) 4 (1,7) 4 (1,7) 53.03 0.320 0.332 0.55.36 55.36	4 (1,4,7,10)				
CLIP-IQA	0.192	0.207	0.208	0.320	0.332	0.347		
MUSIQ	52.84	52.77	53.03	53.50	55.36	55.89		
TReS	63.12	63.33	63.70	61.89	64.38	65.01		
SD	50.12	50.43	51.71	54.67	55.74	56.66		

□ Experimental Analysis — Quantitative Results on Practical Scenarios

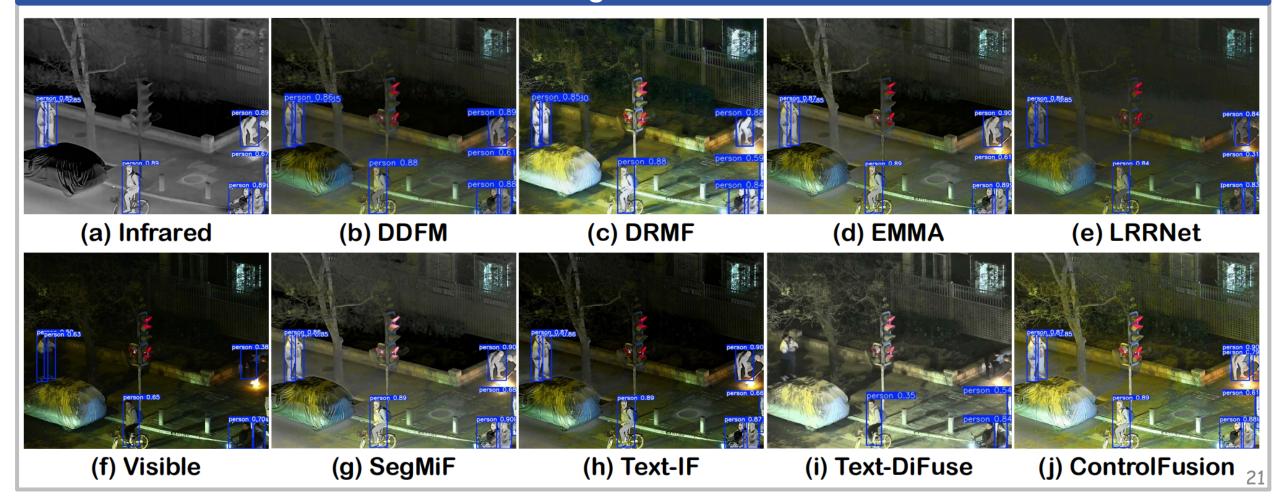
Evaluated on 4 standard datasets to ensure diverse coverage of real-world conditions

LLVIP: Challenging low-light surveillance scenarios

FMB: Comprehensive multi-scenario benchmark

Dominating Performance: ControlFusion consistently dominates across all datasets, validating its reliability for practical deployment

	MSRS	3			LLVII	P		
Methods	EN	SD	VIF	Qabf	EN	SD	VIF	Qabf
DDFM	6.431	47.815	0.844	0.643	6.914	48.556	0.693	0.517
DRMF	6.268	45.117	0.669	0.550	6.901	50.736	0.786	0.626
EMMA	6.747	52.753	0.886	0.605	6.366	47.065	0.743	0.547
LRRNet	6.761	49.574	0.713	0.667	6.191	48.336	0.864	0.575
SegMiF	7.006	57.073	0.764	0.586	7.260	45.892	0.539	0.459
Text-IF	6.619	55.881	0.753	0.656	6.364	49.868	0.859	0.566
Text-DiFuse	6.990	56.698	0.850	0.603	7.546	55.725	0.883	0.659
ControlFusion	7.340	60.360	0.927	0.718	7.354	56.631	0.968	0.738


	RoadS	Scene			FMB			
Methods	EN	SD	VIF	Qabf	EN	SD	VIF	Qabf
DDFM	6.994	47.094	0.775	0.595	6.426	40.597	0.495	0.442
DRMF	6.231	44.221	0.728	0.527	6.842	41.816	0.578	0.372
EMMA	6.959	46.749	0.698	0.664	6.788	38.174	0.542	0.436
LRRNet	7.185	46.400	0.756	0.658	6.432	48.154	0.501	0.368
SegMiF	6.736	48.975	0.629	0.584	6.363	47.398	0.539	0.482
Text-IF	6.836	47.596	0.634	0.609	7.397	47.726	0.568	0.528
Text-DiFuse	6.826	50.230	0.683	0.662	6.888	49.558	0.793	0.653
ControlFusion	7.421	51.759	0.817	0.711	7.036	50.905	0.872	0.730

□ Experimental Analysis — Object Detection

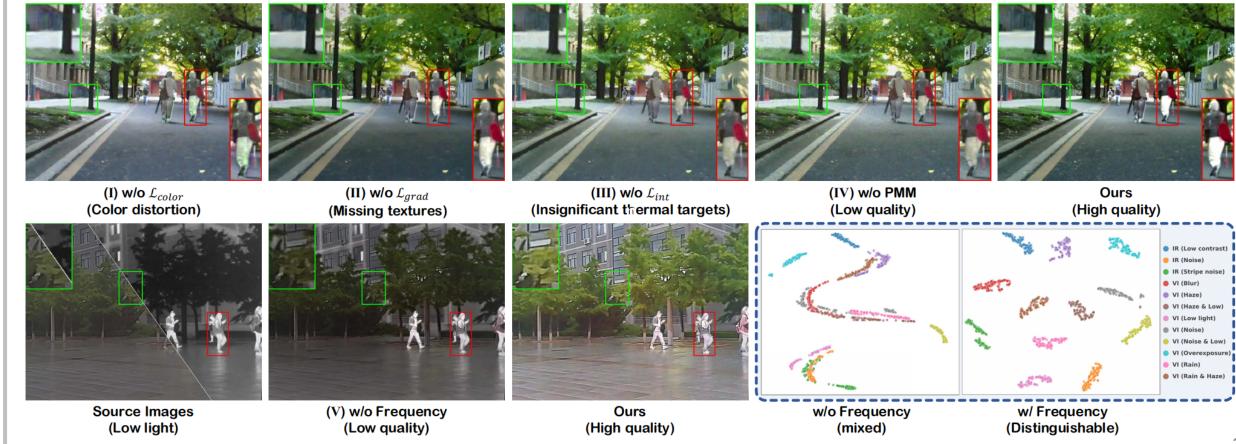
Visualization results of target detection on the LLVIP dataset

□ Experimental Analysis — Object Detection

- **© Dual-Purpose Perception:** High-quality fusion must serve both human visual preference and machine perception (downstream tasks)
- Information Aggregation: Effectively preserves thermal targets (from IR) and texture details (from Visible) to aid detection
- Significant Boosting: Achieves the highest Precision and mAP, validating the model's effectiveness in semantic understanding

Core Value: ControlFusion successfully bridges the gap between pixel-level fusion and high-level semantic tasks

Quantitative comparison of object detection on the LLVIP dataset


Methods	Prec.	Recall	AP@0.50	AP@0.75	mAP@0.5:0.95
DDFM	0.947	0.848	0.911	0.655	0.592
DRMF	0.958	0.851	0.937	0.672	0.607
EMMA	0.942	0.872	0.927	0.647	0.598
LRRNet	0.939	0.878	0.933	0.672	0.608
SegMiF	0.965	0.896	0.931	0.690	0.603
Text-IF	0.959	0.892	0.939	0.655	0.601
Text-DiFuse	0.961	0.885	0.941	0.656	0.606
ControlFusion	0.971	0.889	0.949	0.685	0.609

□ Experimental Analysis — Ablation Studies

Visual results of ablation studies under degradation scenarios

□ Experimental Analysis — Ablation Studies

Purpose: Compare full model against five component variants to verify individual effectiveness

Ablation Variants (Configs I-V):

- ✓ Config I: w/o Color Loss
- ✓ Config II: w/o Gradient Loss
- ✓ Config III: w/o Intensity Loss

- ✓ Config IV: w/o PMM (Prompt Modulation Module)
- ✓ Config V: w/o Frequency Branch

Table 6: Quantitative results of the ablation studies.

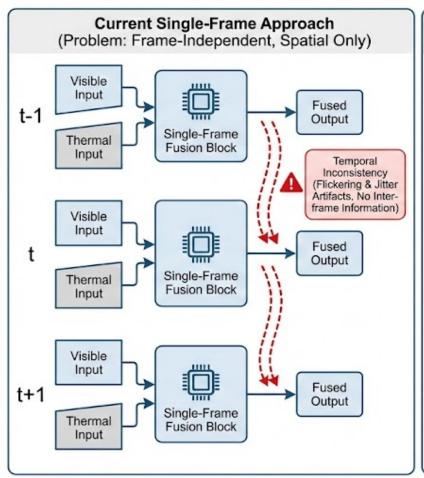
VI(LL & Noise)				VI(OE) and IR(LC)				VI (RH) and IR(Noise)				
Configs	CLIP-IQA	MUSIQ	TReS	EN	CLIP-IQA	MUSIQ	TReS	SD	CLIP-IQA	MUSIQ	TReS	SD
I	0.132	42.424			0.166	41.983			0.147	43.619	47.932	48.935
II	0.152	45.582	45.358	5.855	0.151	43.646	42.002	39.208	0.167	47.862	45.007	44.347
III	0.154	46.571	44.495	5.013	0.155	44.286	44.561	42.068	0.156	43.007	43.816	41.544
IV	0.129	38.960	41.310	5.414	0.172	41.743	39.125	38.748	0.118	48.882	46.245	45.910
${f V}$	0.173	45.281	46.291	6.279	0.181	45.386	47.519	46.860	0.149	46.714		
Ours	0.225	49.333	49.513	7.111	0.187	50.479	50.298	50.955	0.179	50.107	51.091	55.417

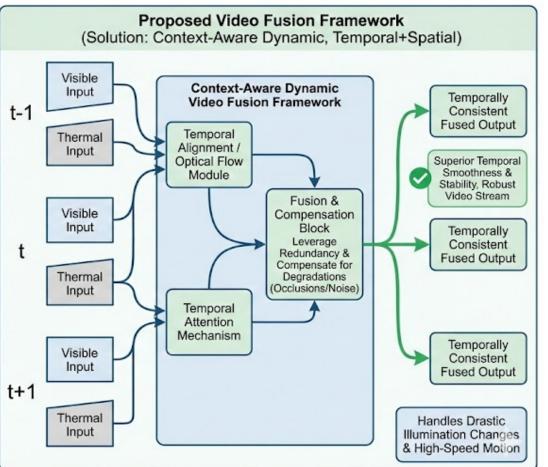
Physics-Driven Model

- Integrates Retinex theory and atmospheric scattering principles
- Bridges the gap between synthetic data and real-world images
- Specifically models the degradation of infrared-visible dual modalities

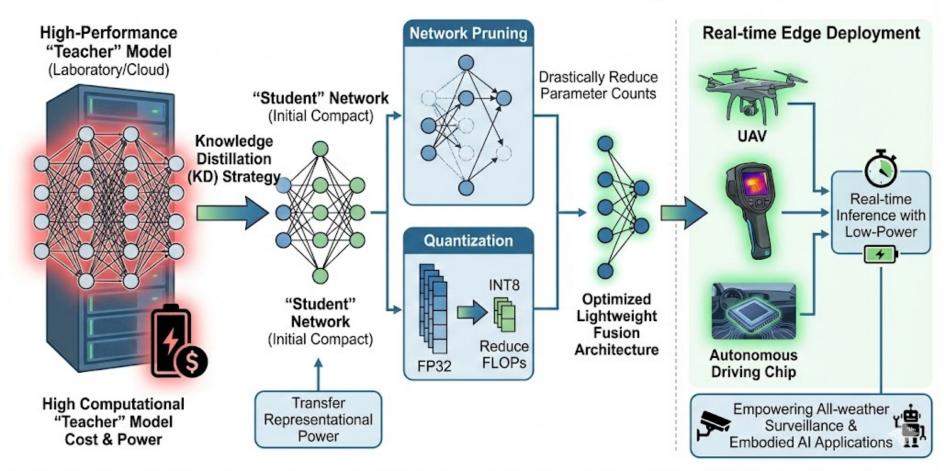
Controllabe Framework

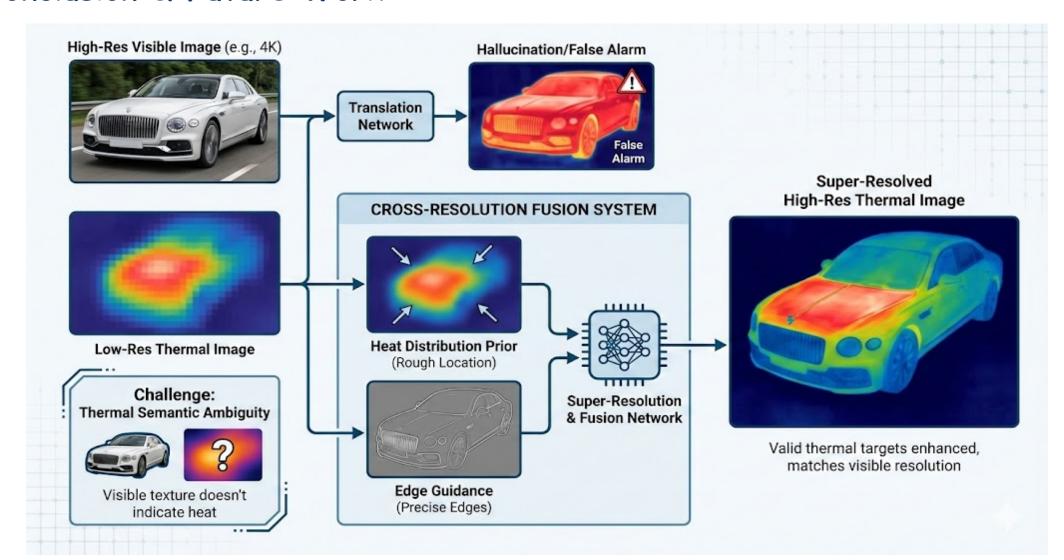
- Propose ControlFusion, a unified framework using prompts as a medium
- Uniformly models diverse degradation types and degrees
- Controllability: Responds precisely to user-specific customization needs.


Automated Deployment


- Devised a novel **visual adapter** to integrate frequency characteristics
- Directly extracts text-aligned degradation prompts from input images
- Enables automated deployment without manual intervention

Extension to Video Fusion with Temporal Consistency





Lightweight Architecture for Real-time Edge Deployment

ControlFusion: A Controllable Image Fusion Network with Language-Vision Degradation Prompts

Thank You for Watching!

View on Github: https://github.com/Linfeng-Tang/ControlFusion

This work was supported by National Natural Science Foundation of China (No. 62276192).