

Transformers Learn Chain-of-Thought Reasoning with Length Generalization

Yu Huang^{I,*}

Zixin Wen^{2,*}

Aarti Singh²

Yuejie Chi³

Yuxin Chen¹

Rationale

¹University of Pennsylvania ² Carnegie Mellon University

³Yale University

Mechanisms of Long CoT Reasoning

when transformers length-generalize, when they stall, and how recursive selftraining pushes the length boundary?

Background

Standard Q: There were 10 friends playing a video game online when 7 players quit. If each player left had 8 lives, how many lives did they have total? many lives did they have total? A: The answer is

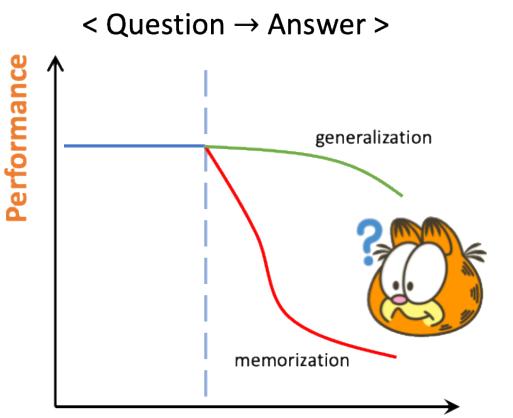
(Output) 80. X

Q: There were 10 friends playing a video game online when 7 players quit. If each player left had 8 lives, how

CoT

A: Let's think step by step.

(Output) There were 10 friends playing a video game Answer 8 = 56 lives were lost. Therefore, the total number of lives remaining is 80 - 56 = 24. The answer is 24.

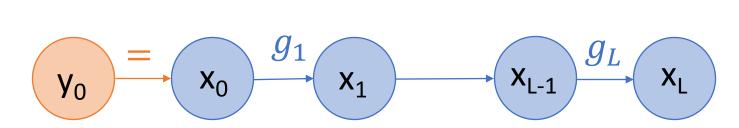


< Question → Rationale → Answer >

Length generalization:

whether models can extrapolate to longer CoT beyond training?

State-tracking task

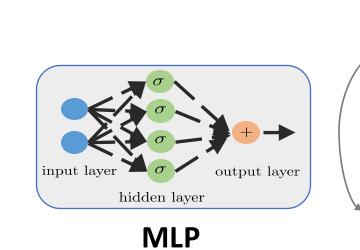


context length

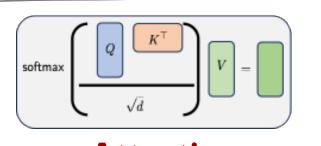
Variable $x \in \mathcal{X}$ Action $g_{\ell} \in \mathcal{G}$

Value: $y_0 \in \mathcal{Y}$

 $x_1 = g_1(x_0), \dots | x_{m+1} = g_{m+1}(x_m) | \dots, x_L = g_L(x_{L-1}), \quad x_0 = y_0, \dots, | x_m = y_m | x_{m+1} =$



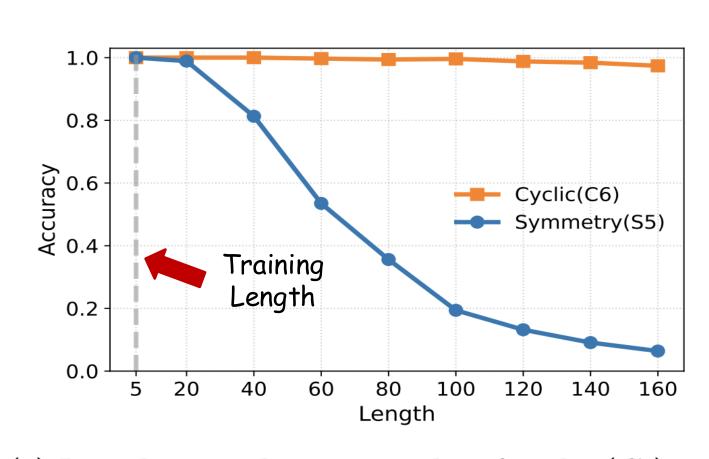
1.Retrieve: g_{m+1} , y_m



Attention

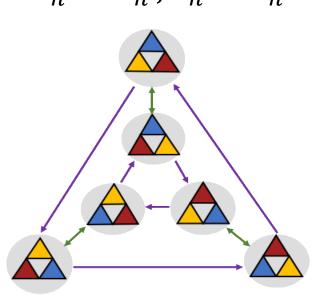
2. Apply $x_{m+1} = y_{m+1}$ $g_{m+1}(y_m)$

Does the learned CoT generalize?



(a) Length generalization results of cyclic (C_6) vs. symmetry (S_5) tasks.

Simply transitive C_n on \mathbb{Z}_n ; S_n on S_n



Symmetry S_n on \mathbb{Z}_n

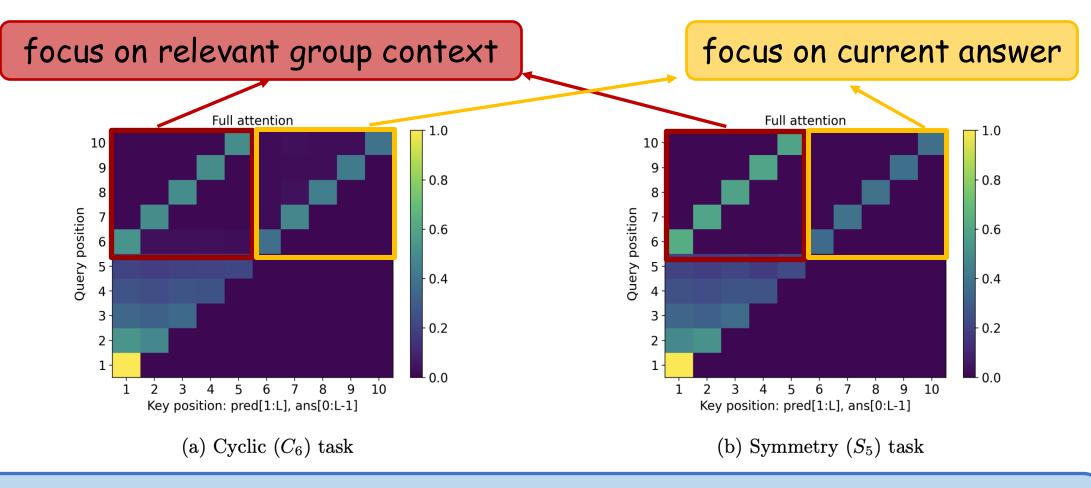
Theorem (informal)

- Simply transitive: CoT training on constant-length yields generalization to significantly longer $d^{\Omega(1)}$.
- Symmetry: CoT training only generalizes to a constant factor of training length.

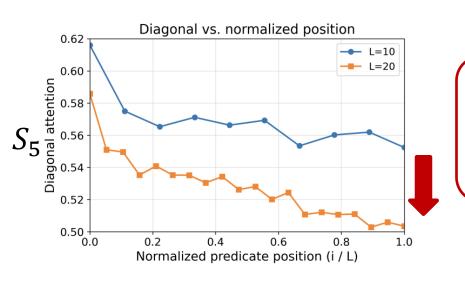
Message 1: algebraic structure of actions dictates how far the reasoning length generalizes

When does length generalization fail?

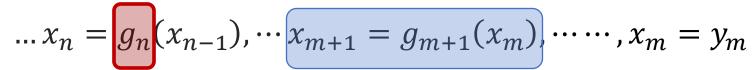
Attention Concentration Mechanism



Message 2: as length increasing, more irrelevant context will dilute the attention concentration



Relevant attention dilutes quickly due to many distractors

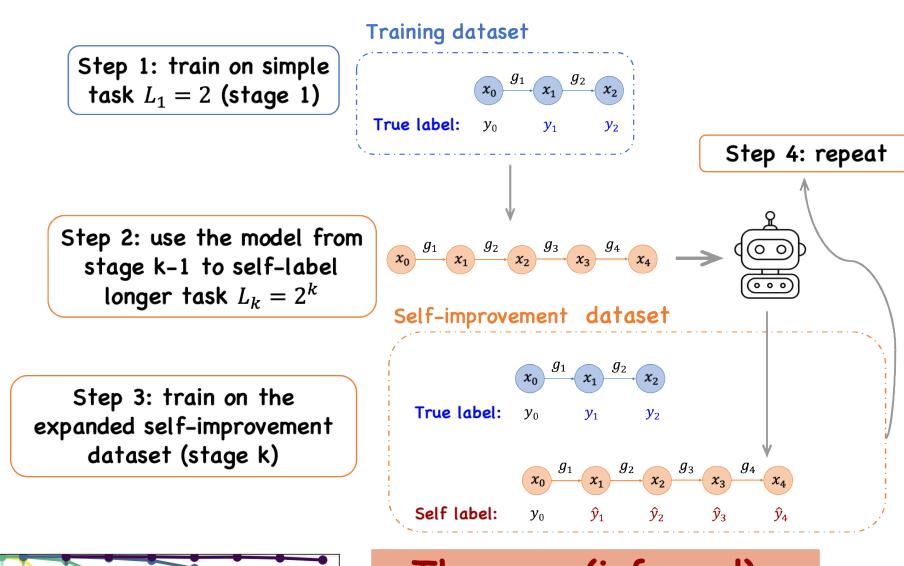


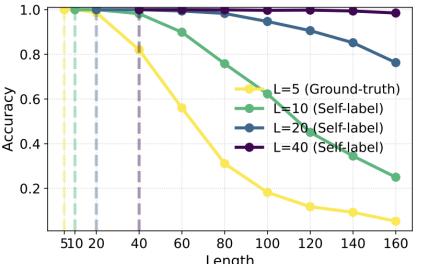
distractors: $g_n \circ y_m = g_{m+1} \circ y_m$

Loss convergence robust attention in longer context

Recursive self-improvement

If the transformer fails to length-generalize, can it selfimprove (Lee et al., 2025) its reasoning length?





Theorem (informal)

Transformers trained on selflabeled CoTs of length 2^{k-1} **generalize** to solve task of 2^k

Message 3: recursive self-training provably extends the solvable reasoning length

Theoretical contribution: the first optimization guarantee showing constant-depth transformers learn to solve problems beyond TC⁰

