

Co-Reinforcement Learning for Unified Multimodal Understanding and Generation

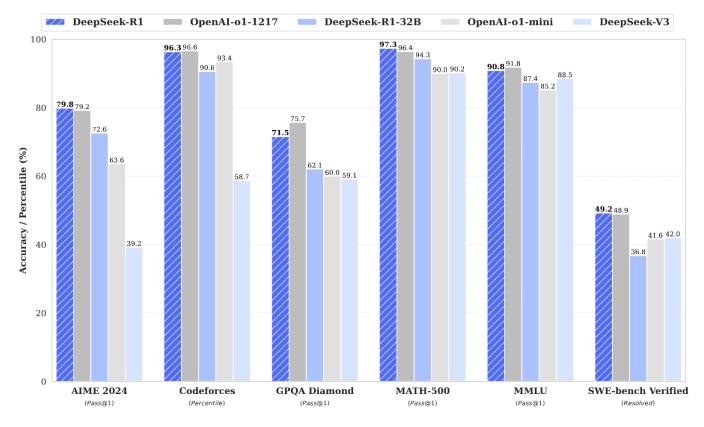
Jingjing Jiang^{1,2} Chongjie Si¹ Jun Luo² Hanwang Zhang² Chao Ma^{1*}

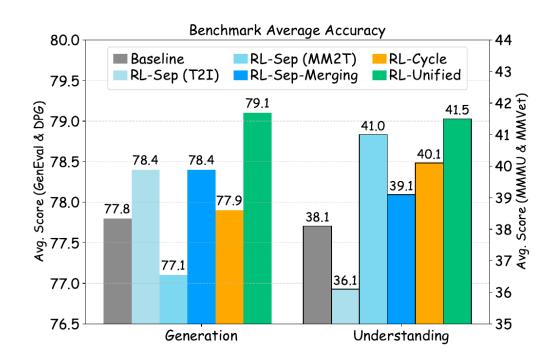
¹ Shanghai Jiao Tong University ² Nanyang Technological University

Background

DeepSeek-R1

• The RL with verifiable rewards and GRPO is a promising post-training paradigm, enabling pretrained LFMs effectively acquire advanced capabilities and generalization without dependence on large-scale, high-quality supervised data




Figure 1 | Benchmark performance of DeepSeek-R1.

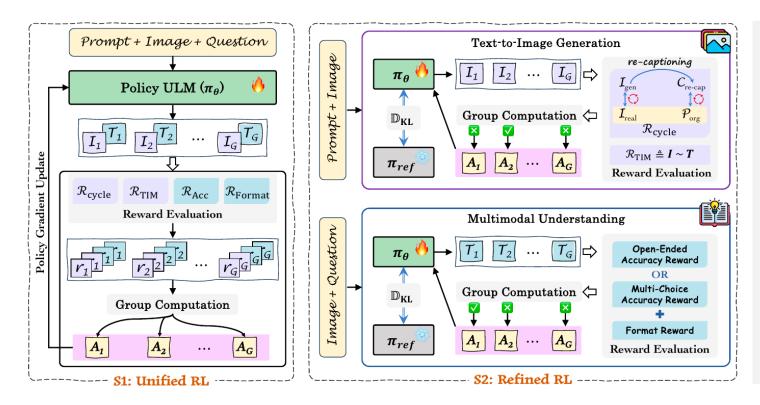
Daya Guo, Dejian Yang, et al. Deepseek-R1: Incentivizing reasoning capability in llms via reinforcement learning. DeepSeek, 2025.

Motivation

- Comparing 4 distinct RL paradigms using Janus-Pro-1B as the baseline ULMs across both generation and understanding tasks
 - ✓ **RL-Sep:** understanding and generation tasks are independently optimized under their respective rewards
 - ✓ **RL-Merging:** separate RL followed by weight merging strategy to incorporate both abilities
 - ✓ **RL-Cycle**: using a scheduled alternation between the two tasks throughout the training process
 - ✓ **RL-Unified:** both tasks are jointly optimized within a unified framework to promote co-evolution

Findings:

- ① Direct single-task RL fails to achieve the expected improvements for ULMs, particularly in the visual generation task, and may even impair the other task's performance
- 2 Compared with alternative strategies, unified RL demonstrates average performance advantages over alternative paradigms


The synergistic co-evolution of dual capabilities under a shared policy optimization paradigm

Methodology

Co-Reinforcement Learning (CoRL)

- A two-stage (unified-then-refined) RL paradigm
 - Unified RL (Stage 1): to jointly optimize the dual capabilities of ULMs and build a powerful generalist foundation
 - Refined RL (Stage 2): to further improve target tasks built upon the established strong foundation

Verifiable Rewards

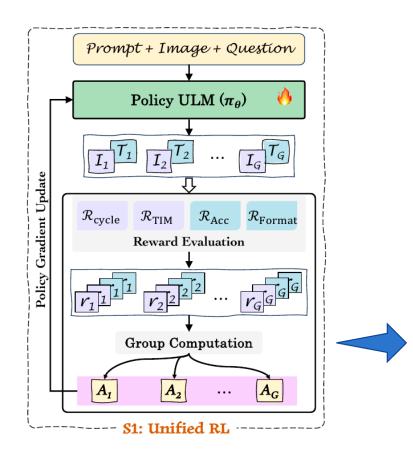
Bidirectional Cycle Consistency Reward

$$\mathcal{R}_{\text{cycle}} = 1 - \text{LPIPS}(\mathcal{I}_{\text{real}}, \mathcal{I}_{\text{gen}}) + \text{SPICE}(\mathcal{P}_{\text{org}}, \mathcal{C}_{\text{re-cap}})$$

Text-Image Matching Reward

$$\mathcal{R}_{\mathsf{TIM}} = rac{1}{2} \left(rac{1}{L_i} \sum_{j=1}^{L_i} \max_{k \in [1, L_t]} \cos(oldsymbol{i}_j, oldsymbol{t}_k) + rac{1}{L_t} \sum_{k=1}^{L_t} \max_{j \in [1, L_i]} \cos(oldsymbol{t}_k, oldsymbol{i}_j)
ight)$$

Accuracy Reward


 $\mathcal{R}_{ ext{MCQ-Acc}} | \mathcal{R}_{ ext{OE-Acc}}$

Format Reward

 $\mathcal{R}_{ ext{Format}}$

Methodology

Unified RL (Stage 1)

Reward Function

$$\mathcal{R}_{ ext{Uni-S1}} = \mathcal{R}_{ ext{cycle}} + \mathcal{R}_{ ext{TIM}} + \lambda \cdot (\mathcal{R}_{ ext{Acc}} + \mathcal{R}_{ ext{Format}})$$

Training Objective

$$\mathcal{L}_{\mathrm{S1}} = \mathbb{E}_{\{o_i\}_{i=1}^G \sim \pi_{oldsymbol{ heta}_{\mathrm{old}}}} \, rac{1}{G} \sum_{i=1}^G rac{\pi_{oldsymbol{ heta}}(o_i)}{\pi_{oldsymbol{ heta}_{\mathrm{old}}}(o_i)} A_i$$
 , where $o_i = (\mathcal{I}_i, \mathcal{T}_i)$

■ Training Data Format: Triplet < Image, Prompt, Question >

Generation

Prompt: a girl eating a carrot

Question: The girl is going to get hurt if the carrot goes in her throat because she will start doing what?

Options:

- A. choking
- B. passing out
- C. chewing
- D. laughing

Answer the question based on the image and your knowledge.

Please write your thinking process inside <think> </think> tags, and provide your final answer (option letter, e.g., A/B/C/D) inside <answer> </answer> tags.

Your response MUST strictly follow this format: <think> ...</think> <answer>option letter</answer>

- Understanding (MC)

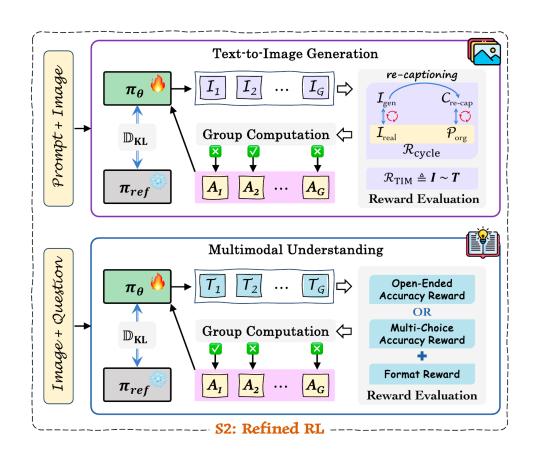
Generation

Prompt: an ice cream truck parked in a field with kites flying in the sky

Question: What type of truck is this?

Answer the question based on the image and your knowledge.

Please write your thinking process inside <think> </think> tags, and provide your final answer (only 1-3 words) inside


<answer> </answer> tags.

Your response MUST strictly follow this format: <think> ...</think> <answer>concise answer</answer>

Understanding (OE)

Methodology

■ Refined RL (Stage 2)

Reward Function for Text-to-Image Generation

$$\mathcal{R}_{ ext{T2I-S2}} = \mathcal{R}_{ ext{cycle}} + \mathcal{R}_{ ext{TIM}}$$

Reward Function for Multimodal Understanding

$$\mathcal{R}_{MCQ-S2} = \mathcal{R}_{MCQ-Acc} + \mathcal{R}_{Format}$$
 $\mathcal{R}_{OE-S2} = \mathcal{R}_{OE-Acc} + \mathcal{R}_{Format}$

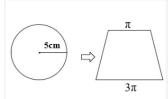
Training Objective

$$\mathcal{L}_{S2} = \mathbb{E}_{\left\{o_i
ight\}_{i=1}^G \sim \pi_{oldsymbol{ heta}_{
m old}}} rac{1}{G} \sum_{i=1}^G \left[rac{\pi_{oldsymbol{ heta}}(o_i)}{\pi_{oldsymbol{ heta}_{
m old}}(o_i)} A_i - eta \, \mathbb{D}_{
m KL} \left(\pi_{oldsymbol{ heta}} \, \| \, \pi_{
m ref}
ight)
ight]$$

■ Text-to-Image Generation

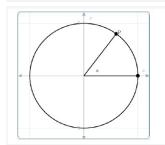
Model	Scale	Res.	Туре		WISE ↑	DPG ↑							
Wiodei				Two Obj.	Counting	Position	Color Attri.	Overall	Overall	Overall			
▼ Generation Only													
PixArt- α [5]	0.6B	512^{2}	Diff	0.50	0.44	0.08	0.07	0.48	0.47	71.11			
SDv1.5 [58]	0.9B	512^{2}	Diff	0.38	0.35	0.04	0.06	0.43	0.32	63.18			
SDv2.1 [58]	0.9B	512^{2}	Diff	0.51	0.44	0.07	0.17	0.50	0.32	68.09			
SD3-Medium [15]	2B	512^{2}	Diff	0.94	0.72	0.33	0.60	0.74	0.42	84.08			
SDXL [53]	2.6B	1024^{2}	Diff	0.74	0.39	0.15	0.23	0.55	0.43	74.65			
DALL·E 3 [3]	-	1024^{2}	Diff	0.87	0.47	0.43	0.45	0.67	-	83.50			
LlamaGen [65]	0.8B	256^{2}	F-AR	0.34	0.21	0.07	0.04	0.32	-	65.16			
SimpleAR [76] 🐥	1.5B	1024^2	F-AR	0.90	-	0.28	0.45	0.63	-	81.97			
▼ Unified Understanding and Generation													
TokenFlow [55]	8B	256^{2}	F-AR	0.60	0.41	0.16	0.24	0.55	-	73.38			
Emu3 [79]	8B	512^{2}	F-AR	-	-	-	-	0.66	0.39	80.60			
Emu3-DPO [79] 🐥	8B	512^{2}	F-AR	-	-	-	-	0.64	-	81.60			
LWM [38]	7B	512^{2}	F-AR	0.41	0.46	0.09	0.15	0.47	-	-			
Orthus [28]	7B	512^{2}	AR-Diff	-	-	-	-	0.58	0.27	-			
Janus-Pro [8]	7B	384^{2}	F-AR	0.89	0.59	0.79	0.88	0.80	0.35	84.19			
ILLUME+ [22]	3B	384^{2}	AR-Diff	0.88	0.62	0.42	0.53	0.72	-	-			
D-DiT [36]	2B	512^{2}	Diff	0.80	0.54	0.32	0.50	0.65	-	-			
Harmon [84]	1.5B	512^{2}	F-AR	0.86	0.66	0.74	0.48	0.76	0.41	-			
show-o [87]	1.3B	512^{2}	AR-Diff	0.80	0.66	0.31	0.50	0.68	0.35	67.48			
HermesFlow [89] 🐥	1.3B	512^{2}	AR-Diff	0.84	0.66	0.32	0.52	0.69	-	70.22			
Janus [82]	1.3B	384^{2}	F-AR	0.68	0.30	0.46	0.42	0.61	0.23	79.68			
Janus-Pro [8]	1.5B	384^{2}	F-AR	0.82	0.51	0.65	0.56	0.73	0.26	82.63			
ULM-R1 ♣	1.5B	384^{2}	F-AR	0.85	0.71	0.68	0.80	0.77	0.33	83.92			

______SJTU]


Text-to-Image Generation: ULM-RI demonstrates superior text-to-image alignment and object grounding across diverse prompts, with especially notable improvements in spatial arrangement of objects and compositional consistency

Multimodal Understanding

Model	LLM	Multi-Choice (MC) ↑			Open-Ended (OE) ↑			MC&OE Mixed ↑			
Wiodei		MMMU	MMStar	MathWe	MMVet	POPE	Logic ^{VT}	Math ^{VT}	Math ^{VS}	Math ^{Vis}	
▼ Understanding Only											
SmolVLM [47]	SmolLM2-1.7B	38.8	41.7	9.1	33.8	85.5	28.0	43.6	12.6	12.8	
SAIL-VL [11]	Qwen2.5-1.5B	44.1	56.5	14.6	44.2	88.1	30.4	62.8	17.4	17.3	
Ovis2 [44]	Qwen2.5-1.5B	45.6	56.7	9.9	58.3	87.8	34.7	64.1	29.4	17.7	
InternVL3 [107]	Qwen2.5-1.5B	48.7	61.1	22.9	67.0	90.1	34.7	57.6	24.5	20.2	
Qwen2.5-VL [2]	Qwen2.5-3B	51.2	56.3	22.9	60.0	85.9	40.3	61.2	31.2	21.9	
LMM-R1 [51]	Qwen2.5-3B	-	58.0	-	-	-	-	63.2	41.6	26.4	
▼ Unified Understanding and Generation											
ILLUME+ [22]	Qwen2.5-3B	44.3	-	-	40.3	87.6	-	-	-	-	
Harmon [84]	Qwen2.5-1.5B	38.9	-	-	-	87.6	-	-	-	-	
VILA-U [85]	LLaMA-2-7B	-	-	-	33.5	85.8	-	-	-	-	
Orthus [28]	Chameleon-7B	28.2	-	-	-	79.6	-	-	-	-	
UniToken [26]	Chameleon-7B	32.8	46.1	-	-	-	-	38.5	-		
SGen-VL [30]	InternLM2-1.8B	34.2	-	-	34.5	85.3	-	42.7	-		
Show-o [87]	Phi-1.3B	26.7	-	-	-	80.0	-	-	-	-	
HermesFlow [89]	Phi-1.3B	28.3	-	-	-	81.4	-	-	-	-	
Janus-Pro [8]	DeepSeek-LLM-7B	41.0	46.5	9.7	50.0	87.4	28.0	42.5	15.9	14.7	
Janus [82]	DeepSeek-LLM-1.3B	30.5	37.6	3.4^{\dagger}	34.3	87.0	23.9^{\dagger}	33.7	14.9^{\dagger}	13.4^{\dagger}	
Janus-Pro [8]	DeepSeek-LLM-1.5B	36.3	43.1^{\dagger}	5.9^{\dagger}	39.8	86.2	23.9^{\dagger}	37.3 [†]	13.5^{\dagger}	13.4^{\dagger}	
ULM-R1	DeepSeek-LLM-1.5B	42.3	47.6	21.1	43.9	88.9	34.5	42.5	25.4	22.0	



Question: As shown in the diagram, there is a circle made of wire. What is the circumference of this circle? Options: A. 15 π B. 10 π C. 5 π D. No correct answer

Janus-Pro: A

ULM-R1: <think>The circumference of a circle is calculated using the formula $C = 2\pi r$. Substituting the given value, r = 5cm, we get $C = 2\pi * 5 = 10\pi$. The answer is B < think > canswer > B < t

Question: The graph shows an angle a in standard position with its terminal side intersecting the figure at P(3/5, 4/5). Find the value of tan a.

Janus-Pro: The value is 3/4.

ULM-R1: <*think>The tangent of an angle in a right triangle is the ratio of the length of the side opposite the* angle to the length of the side adjacent to the angle. In this case, the side opposite the angle a is y-coordinate of the point P, which is 4/5, and the side adjacent to the angle a is the x-coordinate of the point P, which is 3/5. Therefore, $\tan a = (4/5)/(3/5) = 4/3$. The answer is $4/3 < \sinh x < high x <$

Question: What is the substance that is developing on these leaves?

Options: A. Algae B. Downy mildew C. Powdery mildew D. Sooty mould E. Don't know and don't want to guess

Janus-Pro: B

ULM-R1: <think>The green leaves on the plant are covered in a white powdery substance. This substance is a type of mildew that grows on the leaves of plants. Powdery mildew is a common disease that affects many plants. Therefore, the answer is C Powdery mildew. < \think><answer><C<\answer>

failure case

Janus-Pro: Yes, the person is bigger than the car. The person is standing on the side of the road, while the car is on the road ahead of him.

ULM-R1: <think>No, the person is not actually bigger than the car.<\think><answer>No<\answer>

Conclusion

- In this work, we proposed a **co-reinforcement learning framework (CoRL)** to jointly enhance the understanding and generation capabilities of ULMs.
- CoRL implements a two-stage (unified-then-refined) RL paradigm to jointly improve the understanding and generation capabilities of ULMs.
- Despite the substantial improvements achieved, several limitations remain, such as **the capability gap between understanding and generation** and **the primitive rewards for understanding**, which warrant further investigation.