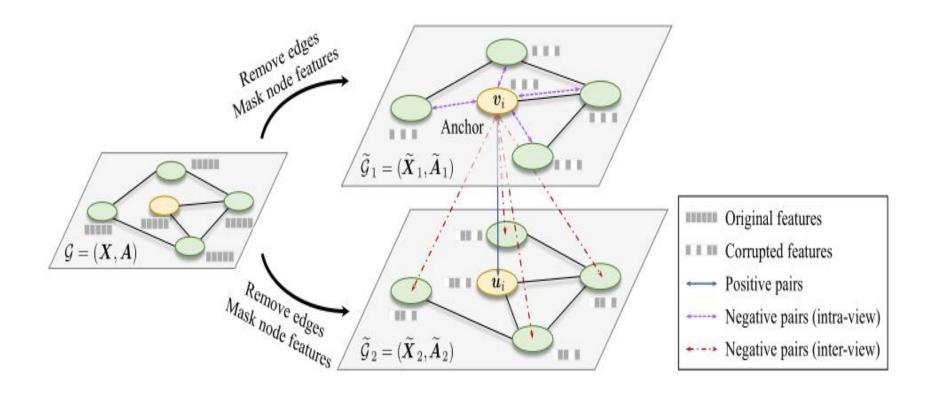
Calibrated Graph Contrastive Learning via Partitioned Similarity and Consistency Discrimination

Background

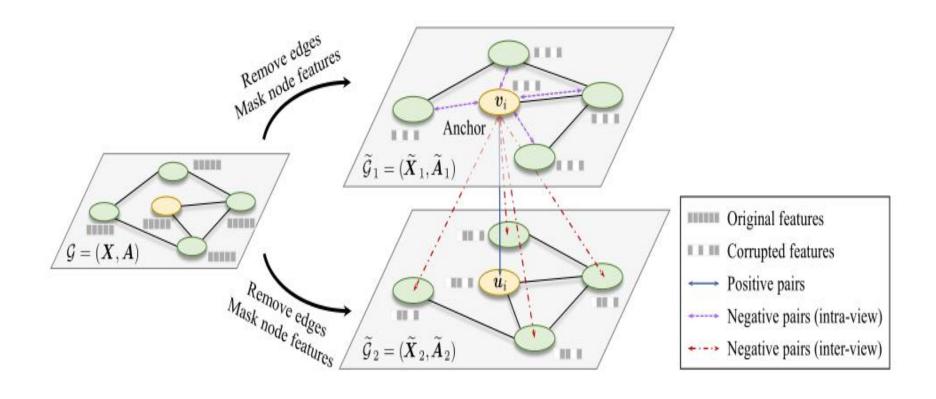
General graph contrastive learning (GCL) pipeline:

- Implement augmentations on raw data to generate multiple views;
- Corresponding samples across augmented views are positives while others are negatives for contrastive learning.

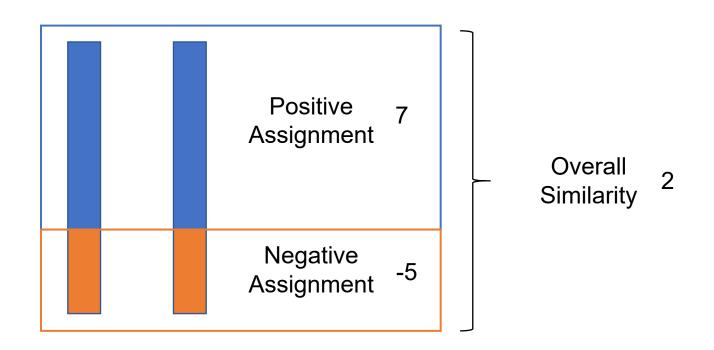


Background

> Semantic shift bias. Random augmentations alter the underlying semantics of samples, leading to incorrect positive or negative assignments and injecting noise into training.



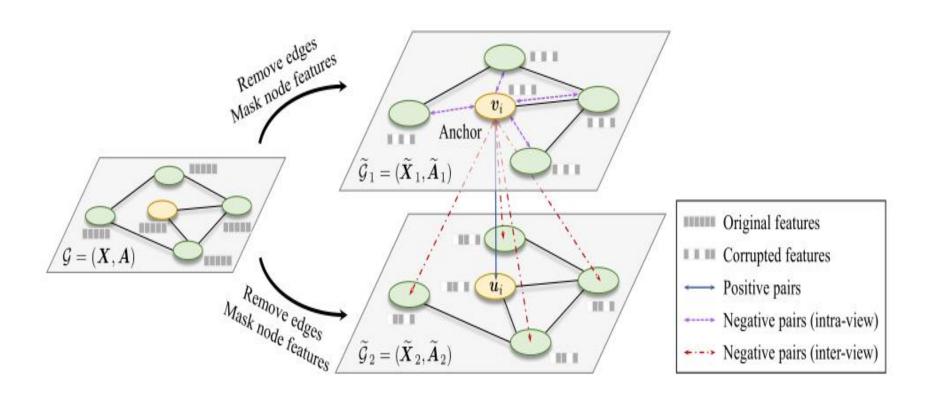
> Similarity estimation bias. Feature elements supporting positive pair alignment are suppressed by conflicting components within the representation, causing positive pairs to appear less similar.



Overall similarity of positive pairs are suppressed.

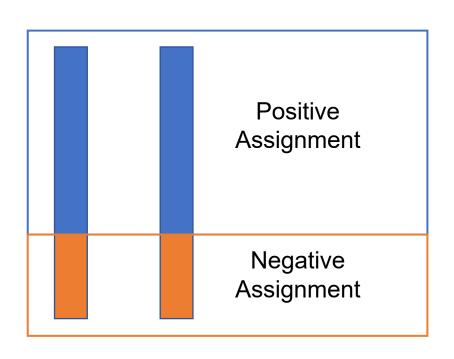
Method

Semantics-consistency discriminator corrects the semantic relationships of augmented sample pairs for debiasing semantic shift.



Method

Exponential partitioned similarity restricts the negatively-synergistic features and amplify the positively-synergistic features to alleviate the similarity estimation bias.



Exponential partitioned similarity:

$$S_{part}(\boldsymbol{h}_{v_i}, \boldsymbol{h}_{v_j}) = \frac{1}{K} \sum_{k=1}^{K} \exp\left(\frac{K \cdot \boldsymbol{h}_{v_i}^{(k) \top} \boldsymbol{h}_{v_j}^{(k)}}{\tau}\right),$$

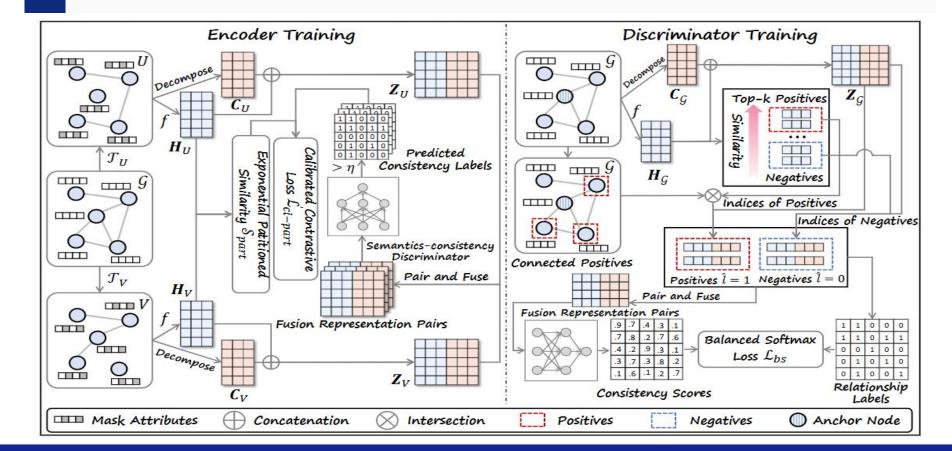
Example:

$$h_{v_i}^ op h_{v_j} = h_{v_i}^{(1) op} h_{v_j}^{(1)} + h_{v_i}^{(2) op} h_{v_j}^{(2)} ext{ and } h_{v_i}^{(2) op} h_{v_j}^{(2)} > h_{v_i}^ op h_{v_j}$$

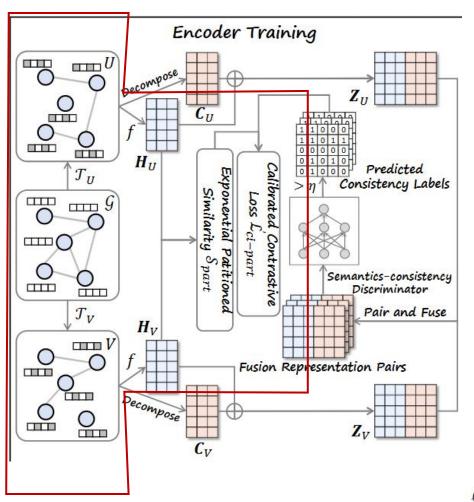
$$\exp\left(\frac{2 \cdot \boldsymbol{h}_{v_i}^{(1)\top} \boldsymbol{h}_{v_j}^{(1)}}{\tau}\right) \to 0, \ and \ \exp\left(\frac{2 \cdot \boldsymbol{h}_{v_i}^{(2)\top} \boldsymbol{h}_{v_j}^{(2)}}{\tau}\right) \ge \exp\left(\frac{\boldsymbol{h}_{v_i}^{\top} \boldsymbol{h}_{v_j}^{}}{\tau}\right)$$

Method

- > The discriminator calibrates the contrastive loss by correcting false positive or negative sample pair assignments caused by augmentation-induced semantic flips;
- > The calibrated encoder generates more reliable representations to further enhance the discriminator in distinguishing the semantics consistency relationships.



Pre-train GNN Encoder



Implement augmentations T_U and T_V to obtain two augmented views U and V, which are processed by f to generate representations H_U and H_V .

$$H_U = f(U)$$

$$H_V = f(V)$$

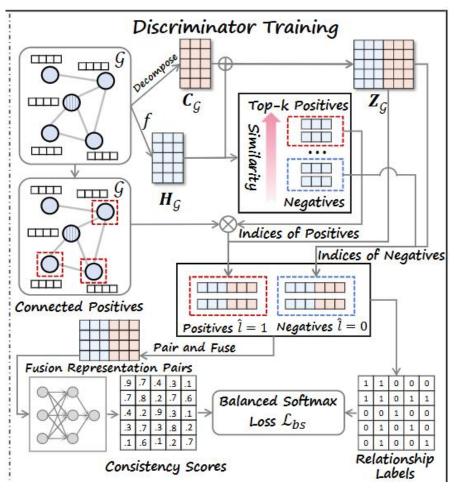
Exponential partitioned similarity:

$$S_{part}(\boldsymbol{h}_{v_i}, \boldsymbol{h}_{v_j}) = \frac{1}{K} \sum_{k=1}^{K} \exp\left(\frac{K \cdot \boldsymbol{h}_{v_i}^{(k) \top} \boldsymbol{h}_{v_j}^{(k)}}{\tau}\right),$$

Partitioned contrastive loss:

$$\ell_{cl-part}(u_i) = -\log \frac{\mathcal{S}_{part}(\boldsymbol{h}_{u_i}, \boldsymbol{h}_{v_i})}{\sum_{j} \mathcal{S}_{part}(\boldsymbol{h}_{u_i}, \boldsymbol{h}_{v_j}) + \sum_{j \neq i} \mathcal{S}_{part}(\boldsymbol{h}_{u_i}, \boldsymbol{h}_{u_j})},$$

Pre-train Discriminator



Decompose the graph Laplacian matrix to obtain the eigenvectors as structural information:

$$\tilde{A} = U\Lambda U^{\mathsf{T}},$$

Feature encoding (h_{v_i}, h_{v_j}) and structural encoding (c_{v_i}, c_{v_j}) are concatenated to form a fusion representation pair

$$ig(oldsymbol{z}_{v_i} = oldsymbol{h}_{v_i} \parallel oldsymbol{c}_{v_i}, oldsymbol{z}_{v_j} = oldsymbol{h}_{v_j} \parallel oldsymbol{c}_{v_j}ig)$$

 p_{v_i,v_j} is used to judge the semantic relationship between v_i and v_j

$$p_{v_i,v_j} = D(\boldsymbol{z}_{v_i} \odot \boldsymbol{z}_{v_j}),$$

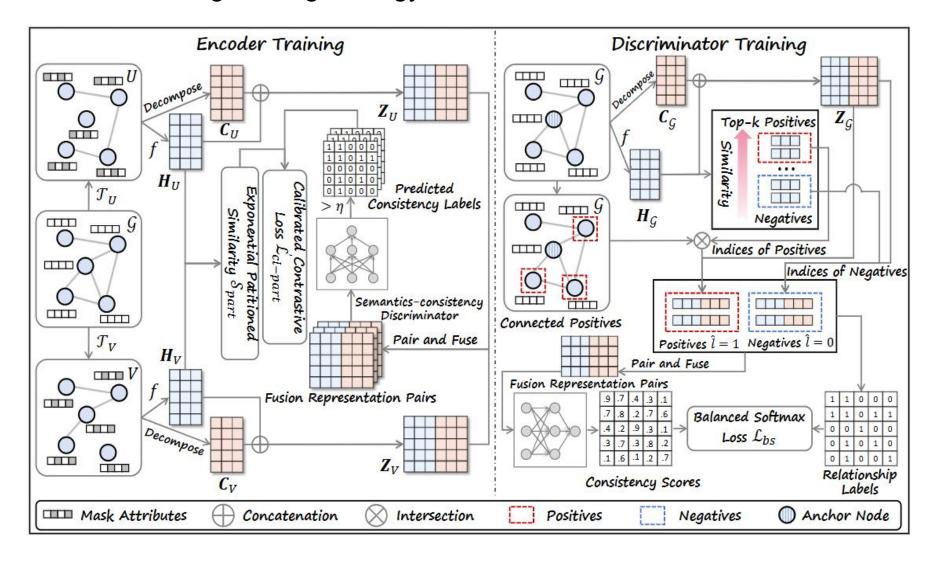
$$\tilde{l}_{v_i,v_j} = \begin{cases} 1, & \text{if } p_{v_i,v_j} \ge \eta \\ 0, & \text{if } p_{v_i,v_j} < \eta \end{cases}$$

Balanced Softmax loss is used for training the discriminator:

$$\mathcal{L}_{bs} = -\sum_{i,j} \log \frac{\mathbb{I}(\hat{l}_{v_i,v_j} = 1) \exp(p_{v_i,v_j} + \log N_{pos}) + \mathbb{I}(\hat{l}_{v_i,v_j} = 0) \exp(p_{v_i,v_j} + \log N_{neg})}{\exp(p_{v_i,v_j} + \log N_{pos}) + \exp(p_{v_i,v_j} + \log N_{neg})}$$

Fine-tuning Process

An alternating training strategy between GNN and discriminator.



Experiments

Dataset	Cora	Citeseer	Pubmed	DBLP	Photo	Computers
AFGRL	83.34 ± 0.87	71.49 ± 0.78	85.21 ± 0.22	83.08 ± 0.14	93.22 ± 0.28	89.88 ± 0.33
SUGRL	85.37 ± 0.55	73.49 ± 0.66	86.68 ± 0.21	83.03 ± 0.23	93.20 ± 0.40	88.90 ± 0.20
NCLA	85.32 ± 0.44	73.24 ± 0.55	85.47 ± 0.40	83.97 ± 0.17	93.48 ± 0.22	89.14 ± 0.35
GREET	85.70 ± 0.46	73.26 ± 0.60	86.95 ± 0.31	83.81 ± 0.13	92.85 ± 0.31	87.94 ± 0.35
HomoGCL	85.40 ± 0.46	72.34 ± 0.40	86.31 ± 0.18	84.39 ± 0.16	93.25 ± 0.26	90.09 ± 0.32
S2GAE	85.46 ± 0.28	73.37 ± 0.47	86.46 ± 0.09	84.08 ± 0.00	93.50 ± 0.16	89.99 ± 0.14
iGCL	84.31 ± 0.43	72.85 ± 0.85	86.17 ± 0.25	83.74 ± 0.23	93.10 ± 0.26	90.06 ± 0.41
PiGCL	84.63 ± 0.78	73.51 ± 0.64	86.30 ± 0.20	84.30 ± 0.28	93.14 ± 0.30	89.25 ± 0.27
Bandana	85.48 ± 0.84	73.04 ± 0.75	86.35 ± 0.25	83.93 ± 0.02	93.44 ± 0.11	89.62 ± 0.09
SGRL	85.36 ± 0.23	73.20 ± 0.22	86.17 ± 0.01	84.12 ± 0.01	93.83 ± 0.04	90.02 ± 0.02
CaliGCL	85.87 ± 0.62	74.13 ± 0.54	87.16 ± 0.19	85.32 ± 0.13	93.72 ± 0.24	90.79 ± 0.28

Experiments

Datasets	Biochemical Molecules			Social Networks			
	NCI1	DD	MUTAG	COLLAB	RDT-B	RDT-M5K	IMDB-B
InfoGCL	76.2 ± 1.1	72.9 ± 1.8	89.0 ± 1.1	70.7 ± 1.1	82.5 ± 1.4	53.5 ± 1.0	73.0 ± 0.9
GraphCL	77.9 ± 0.4	78.6 ± 0.4	86.8 ± 1.4	71.4 ± 1.2	89.5 ± 0.8	56.0 ± 0.3	71.1 ± 0.4
JOAO	78.1 ± 0.5	77.3 ± 0.5	87.4 ± 1.0	69.5 ± 0.4	85.3 ± 1.4	55.7 ± 0.6	70.2 ± 3.1
JOAOv2	78.4 ± 0.5	77.4 ± 1.2	87.7 ± 0.8	69.3 ± 0.3	86.4 ± 1.5	56.0 ± 0.2	70.8 ± 0.3
AD-GCL	69.7 ± 0.5	74.5 ± 0.5	88.6 ± 1.3	73.3 ± 0.6	85.5 ± 0.8	53.0 ± 0.8	71.6 ± 1.0
SimGRACE	79.1 ± 0.4	77.4 ± 1.1	89.0 ± 1.3	71.7 ± 0.8	89.5 ± 0.9	55.9 ± 0.3	71.3 ± 0.8
SPAN	71.4 ± 0.5	75.8 ± 0.5	89.1 ± 0.8	75.0 ± 0.5	83.6 ± 0.6	54.1 ± 0.5	73.7 ± 0.7
GPA	80.4 ± 0.4	79.9 ± 0.4	89.7 ± 0.8	76.2 ± 0.1	89.3 ± 0.4	53.7 ± 0.2	74.6 ± 0.4
DRGCL	79.7 ± 0.4	78.4 ± 0.7	89.5 ± 0.6	70.6 ± 0.8	90.8 ± 0.3	56.3 ± 0.2	72.0 ± 0.5
CaliGCL	80.8 ± 2.0	80.4 ± 2.5	90.4 ± 5.8	77.2 ± 1.7	90.3 ± 2.7	56.5 ± 1.5	76.9 ± 5.0

Experiments

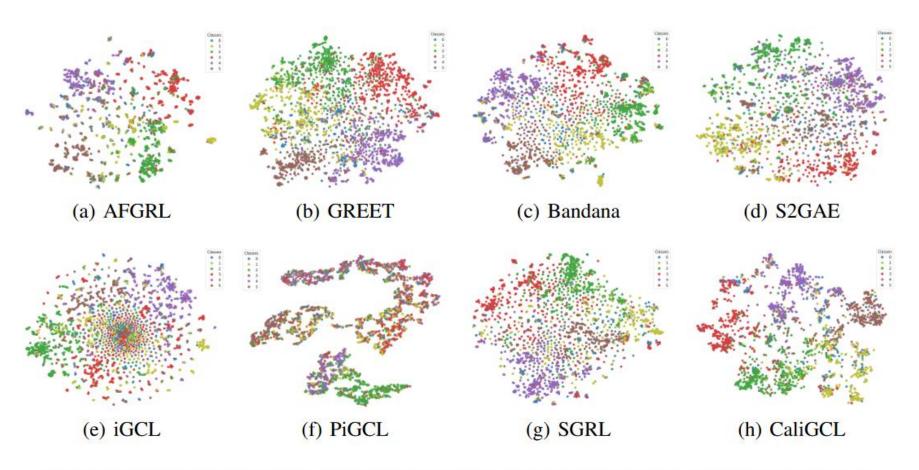


Figure 7: t-SNE visualization of CaliGCL and the comparative models on Citeseer dataset.