InfiFPO: Implicit Model Fusion via Preference Optimization in Large Language Models

¹ The Hong Kong Polytechnic University ^c InfiX.ai ³ Zhejiang University

Yanggan Gu¹², Yuanyi Wang¹, Zhaoyi Yan², Yiming Zhang¹, Qi Zhou¹, Fei Wu³, Hongxia Yang ^{12*}

* Corresponding author.

What is *Model Fusion*?

Model fusion is typically performed during the <u>Supervised Fine-Tuning (SFT)</u> stage. Given N source models $\{\mathcal{M}_i^s\}_{i=1}^N$ and a pivot model (also called target model) \mathcal{M}^p , the model fusion can be cast as a optimization problem:

$$\underset{\mathcal{M}^p}{\operatorname{arg\,max}} \ \underbrace{\mathbb{E}_{\boldsymbol{x},\boldsymbol{y}\sim\mathcal{D}}\left[\log\mathcal{M}^p(\boldsymbol{y}|\boldsymbol{x})\right]}_{\text{(a) SFT loss}} + \beta \underbrace{\sum_{i=1}^N -\mathbb{D}_{\mathrm{TKL}}\left[\mathcal{M}^p(\boldsymbol{y}|\boldsymbol{x})\|\mathcal{M}^s_i(\boldsymbol{y}|\boldsymbol{x})\right]}_{\text{(b) Imitation of source models behavior}},$$

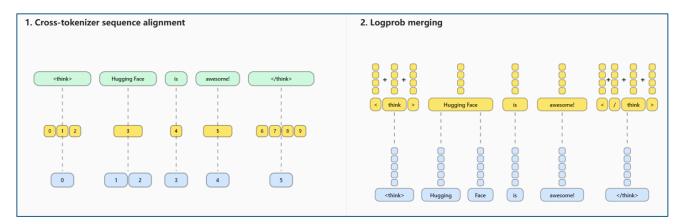
where each sample in the dataset \mathcal{D} contains a prompt sequence x and its corresponding response sequence y. \mathbb{D}_{TKL} indicates token-level KL divergence.

What is the *challenges* for Model Fusion?

Current Model Fusion relies on Token-level KLD, which requires the two models share the same vocabularies. However, heterogeneous models (e.g., Llama and Qwen) usually employ incompatible tokenizers, leading to a fundamental **vocabulary conflict**. It contains two parts:

- **Token Misalignment**: Different tokenizers produce misaligned probability distributions over their vocabularies, making Token-level KLD inapplicable.
- **Sequence Misalignment**: After tokenization, the token sequence lengths for the same text may be different.

For these two misalignment, current work often introduce complex alignment processes, significantly increase the fusion cost.



https://huggingface.co/spaces/HuggingFaceH4/on-policy-distillation

Can we bypass vocabulary conflict?

Quick Review:

The objective of Reinforcement Learning from Human Feedback (RLHF) can be formalized as

$$\underset{\mathcal{M}^{\theta}}{\arg\max} \, \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}, \boldsymbol{y} \sim \mathcal{M}^{\theta}(\boldsymbol{y}|\boldsymbol{x})} [\underbrace{\boldsymbol{r}(\boldsymbol{x}, \boldsymbol{y})}_{\text{(a) Rewards}}] + \beta \underbrace{\left[-\mathbb{D}_{\text{SKL}} \left[\mathcal{M}^{\theta}(\boldsymbol{y}|\boldsymbol{x}) \| \mathcal{M}^{\text{ref}}(\boldsymbol{y}|\boldsymbol{x}) \right] \right]}_{\text{(b) Preventing excessive deviation from } \mathcal{M}^{\text{ref}}}.$$

where r is a reward model that evaluates how good the response y generated by policy model \mathcal{M}^{θ} is. \mathbb{D}_{SKL} indicates sequence-level KL divergence. Usually, the base reference model \mathcal{M}^{ref} is the initial \mathcal{M}^{θ} , and β is a parameter controlling the deviation from \mathcal{M}^{ref} .

Objective of Model Fusion:

If we combine model fusion and RLHF, maybe we can bypass vocabulary conflict with Seq-level KLD.

How to *combine* RLHF and Model Fusion?

FuseRLHF:

$$\operatorname*{arg\,max}_{\mathcal{M}^p} \mathbb{E}_{\boldsymbol{x},\boldsymbol{y}\sim\mathcal{D}} \bigg[\boldsymbol{r}(\boldsymbol{x},\boldsymbol{y}) \bigg]$$
 s.t. $\mathbb{E}_{\boldsymbol{x},\boldsymbol{y}\sim\mathcal{D}} \bigg[\mathbb{D}_{\mathrm{SKL}} \left[\mathcal{M}_i^s(\boldsymbol{y}|\boldsymbol{x}) || \mathcal{M}^p(\boldsymbol{y}|\boldsymbol{x}) \right] \bigg] \leq \varepsilon, \quad \forall i \in \{1,...,N\},$

where the initial pivot model is included in the source models. Each constraint keeps the pivot policy within an ε -ball (in KL divergence) of every teacher, thereby fusing their behaviour while still allowing preference alignment through the reward r.

Can we transform RL into efficient offline learning?

Similar to DPO, after derivation we can get FusePO:

$$\mathcal{L}_{\text{FPO}}(\mathcal{M}^p; \{\mathcal{M}_i^s\}_{i=1}^N) = -\mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}_w, \boldsymbol{y}_l) \sim \mathcal{D}^p} \left[\log \sigma \left(\beta \log \frac{\mathcal{M}^p(\boldsymbol{y}_w | \boldsymbol{x})}{\mathcal{M}_{\text{fu}}^s(\boldsymbol{y}_w | \boldsymbol{x})} - \beta \log \frac{\mathcal{M}^p(\boldsymbol{y}_l | \boldsymbol{x})}{\mathcal{M}_{\text{fu}}^s(\boldsymbol{y}_l | \boldsymbol{x})} \right) \right]$$

where a fused source model $\mathcal{M}^s_{\mathrm{fu}}(m{y}|m{x}) = \prod_{i=1}^N \left(\mathcal{M}^s_i(m{y}|m{x})\right)$

Further Improvement: InfiFPO

Naïve FPO. Directly training with FuseRLHF requires significant time and resources. To reduce that, we convert it to offline FPO:

$$\mathcal{L}_{\text{FPO}}(\mathcal{M}^p; \{\mathcal{M}_i^s\}_{i=1}^N) = -\mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}_w, \boldsymbol{y}_l) \sim \mathcal{D}^p} \left[\log \sigma \left(\beta \log \frac{\mathcal{M}^p(\boldsymbol{y}_w | \boldsymbol{x})}{\mathcal{M}_{\text{fu}}^s(\boldsymbol{y}_w | \boldsymbol{x})} - \beta \log \frac{\mathcal{M}^p(\boldsymbol{y}_l | \boldsymbol{x})}{\mathcal{M}_{\text{fu}}^s(\boldsymbol{y}_l | \boldsymbol{x})} \right) \right]$$

Strategy I: Length Normalization. To address the *length bias* issue arising from varying token sequence lengths across models, we introduce:

$$\overline{\log}\,\mathcal{M}^{(\cdot)}(oldsymbol{y}|oldsymbol{x}) = rac{1}{|oldsymbol{y}|}\log\mathcal{M}^{(\cdot)}(oldsymbol{y}|oldsymbol{x})$$

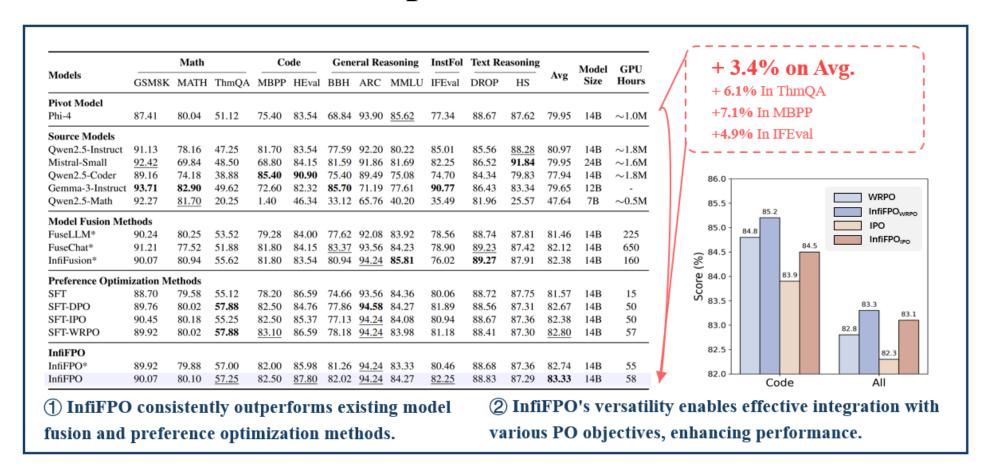
Strategy II: Probability Clipping. To address the *source model degradation* issue caused by noisy outputs from poor-performing models, we propose:

$$\operatorname{Clip}(\mathcal{M}_i^s(\boldsymbol{y}|\boldsymbol{x})) = \begin{cases} \max(\mathcal{M}_i^s(\boldsymbol{y}|\boldsymbol{x}), \mathcal{M}_{\operatorname{init}}^p(\boldsymbol{y}|\boldsymbol{x})), & \text{if } \boldsymbol{y} \text{ is } \boldsymbol{y}_w, \\ \min(\mathcal{M}_i^s(\boldsymbol{y}|\boldsymbol{x}), \mathcal{M}_{\operatorname{init}}^p(\boldsymbol{y}|\boldsymbol{x})), & \text{else.} \end{cases}$$

Final Objective: InfiFPO. Combining the strategies listed above, we have:

$$\left[\mathcal{L}_{\text{InfiFPO}}(\mathcal{M}^p; \{\mathcal{M}_i^s\}_{i=1}^N) = -\mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}_w, \boldsymbol{y}_l) \sim \mathcal{D}^p} \left[\log \sigma \left(\beta \overline{\log} \frac{\mathcal{M}^p(\boldsymbol{y}_w | \boldsymbol{x})}{\mathcal{M}_{\text{fu}}^{s\text{clip}}(\boldsymbol{y}_w | \boldsymbol{x})} - \beta \overline{\log} \frac{\mathcal{M}^p(\boldsymbol{y}_l | \boldsymbol{x})}{\mathcal{M}_{\text{fu}}^{s\text{clip}}(\boldsymbol{y}_l | \boldsymbol{x})} \right) \right]$$

Main Experimental Results



InfiFPO: Implicit Model Fusion via Preference Optimization in Large Language Models

Thanks!