

GeoRanker: Distance-Aware Ranking for Worldwide Image Geolocalization

Pengyue Jia^{1,2}, Seongheon Park², Song Gao³, Xiangyu Zhao¹, Sharon Li²,

¹Department of Data Science, City University of Hong Kong,

²Department of Computer Sciences, University of Wisconsin-Madison

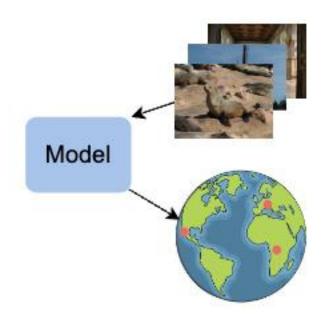
³Department of Geography, University of Wisconsin-Madison

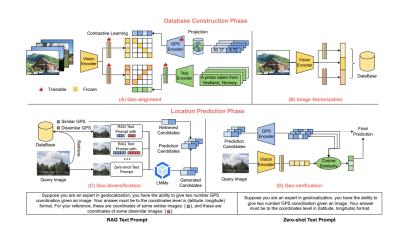
jia.pengyue@my.cityu.edu.hk,sharonli@cs.wisc.edu

01 Background & Motivation

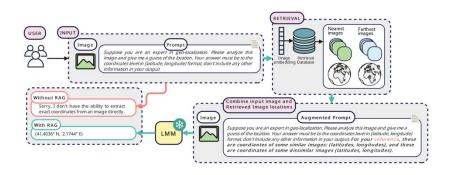
02 Methodology

03 Experiments


Background & Motivation



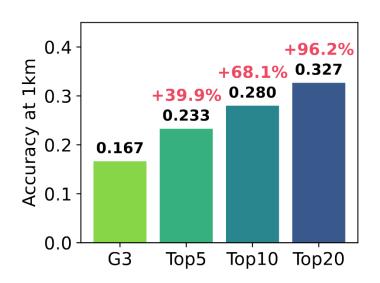
Two-stage Pipeline is Widely Adopted


- Retrieve candidate locations from a global database
- Select the top match based on similarity scores

Worldwide Geolocalization

G3 [NeurlPS'24]

Img2Loc [SIGIR'24]

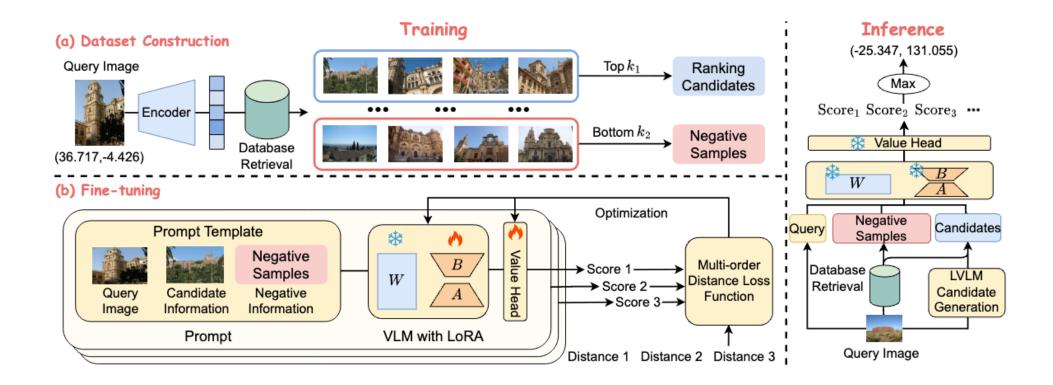

Background & Motivation

Key Observation

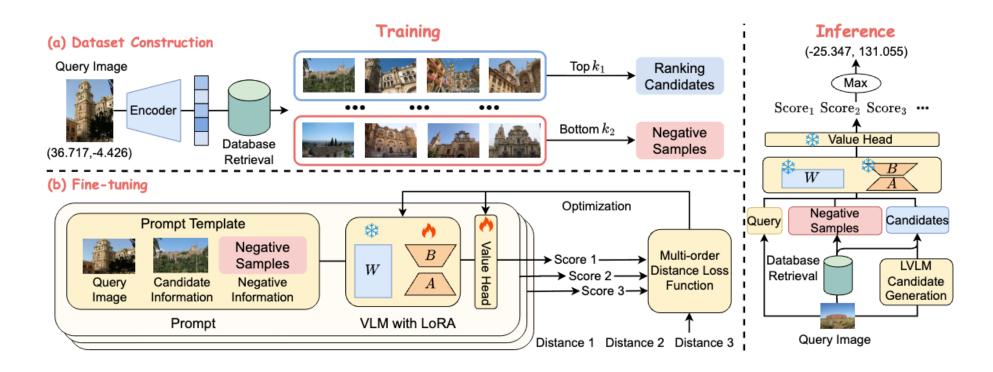
Better candidates often exist within the top-k, but are not selected

Root Cause

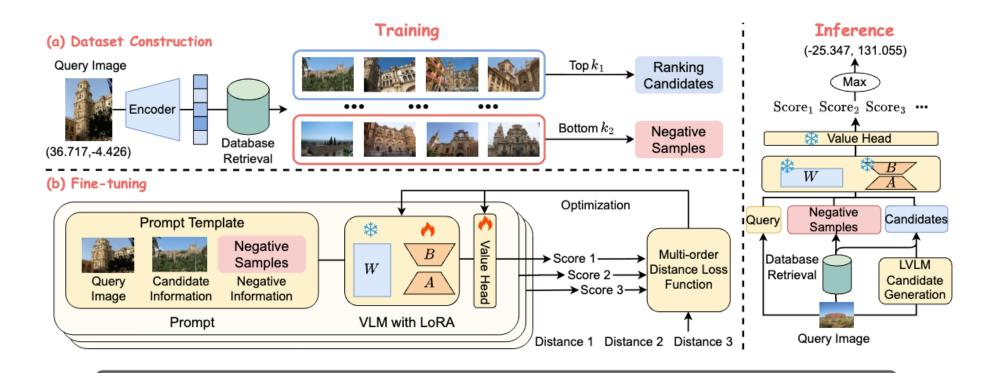
- Existing methods rely on simple <u>similarity heuristics</u> (e.g., cosine similarity of image embeddings)
- Existing training objectives primarily focus on **point-wise similarity** between individual images and locations, overlooking the rich spatial relationships among candidates.



01 Background & Motivation


02 Methodology

03 Experiments

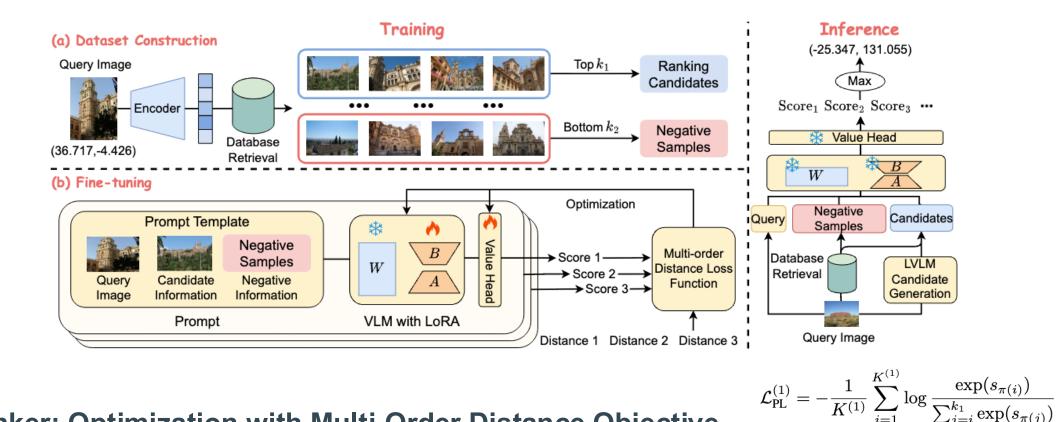


GeoRanking Dataset Construction

- Candidate Encoding $\mathbf{v}_{c_m} = \operatorname{concat}(\operatorname{Encoder}_c^{\operatorname{gps}}(c_m^{\operatorname{gps}}),\operatorname{Encoder}_c^{\operatorname{text}}(c_m^{\operatorname{text}}),\operatorname{Encoder}_m^{\operatorname{img}}(c_m^{\operatorname{img}}))$
- Random Sampling Query Image, Query Encoding
- Retrieving Top-N Candidates $\mathbf{v}_q = \operatorname{concat}(f_{\operatorname{img} \to \operatorname{gps}}(\operatorname{Encoder}^{\operatorname{img}}(q)), f_{\operatorname{img} \to \operatorname{text}}(\operatorname{Encoder}^{\operatorname{img}}(q)), \operatorname{Encoder}^{\operatorname{img}}(q))$

{query image} How far is this place from latitude: {candidate latitude}, longitude: {candidate longitude}, {candidate textual descriptions}, {candidate image}? Negative examples:

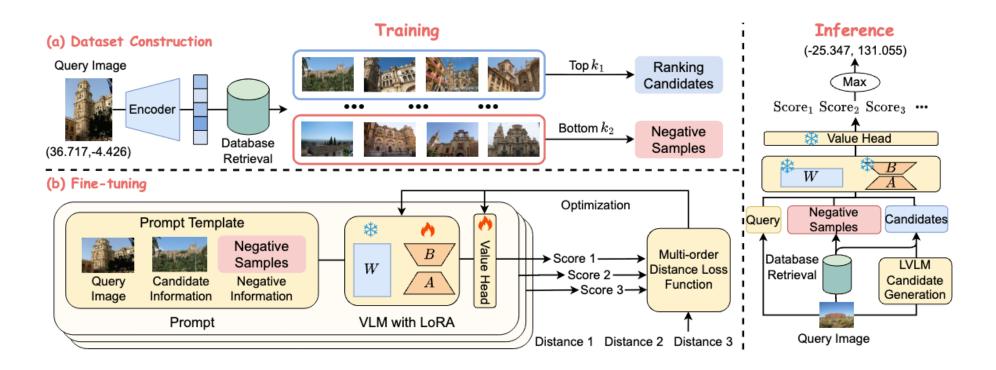
GeoRanker


- Prompt
- Model Architecture: LoRA + Value Head

$$s = \mathbf{w}^{ op} \mathbf{h}_{ ext{final}}, \quad ext{where } \mathbf{h}_{ ext{final}} = ext{LVLM}(\mathbf{x})_{\lceil-1
ceil}$$

{negative information}.

GeoRanker: Optimization with Multi-Order Distance Objective


- First-order Distance Loss
- Second-order Distance Loss
- Joint Optimization

$$\Delta d_{i,j} = d_{\pi(i)} - d_{\pi(j)}, \quad \Delta s_{i,j} = s_{\pi(i)} - s_{\pi(j)}, \quad \text{for } 1 \le i < j \le k_1$$

$$\mathcal{L}_{ ext{PL}}^{(2)} = -rac{1}{K^{(2)}} \sum_{i=1}^{K^{(2)}} \log rac{\exp(\Delta s_{(i)})}{\sum_{j=i}^{P} \exp(\Delta s_{(j)})}$$
 $\mathcal{L}_{ ext{total}} = \lambda \cdot \mathcal{L}_{ ext{PL}}^{(1)} + (1 - \lambda) \cdot \mathcal{L}_{ ext{PL}}^{(2)}$

Inference

$$s_c = \operatorname{GeoRanker}(q,c), \quad \forall c \in \mathcal{C}_{\mathrm{r}} \cup \mathcal{C}_{\mathrm{g}}$$

$$\hat{c} = rg \max_{c \in \mathcal{C}_{ ext{r}} \cup \mathcal{C}_{ ext{g}}} s_c$$

01 Background & Motivation

02 Methodology

03 Experiments

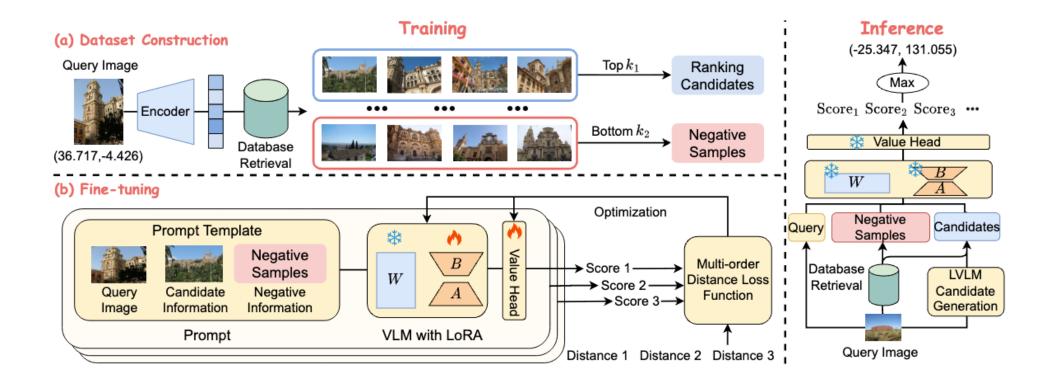


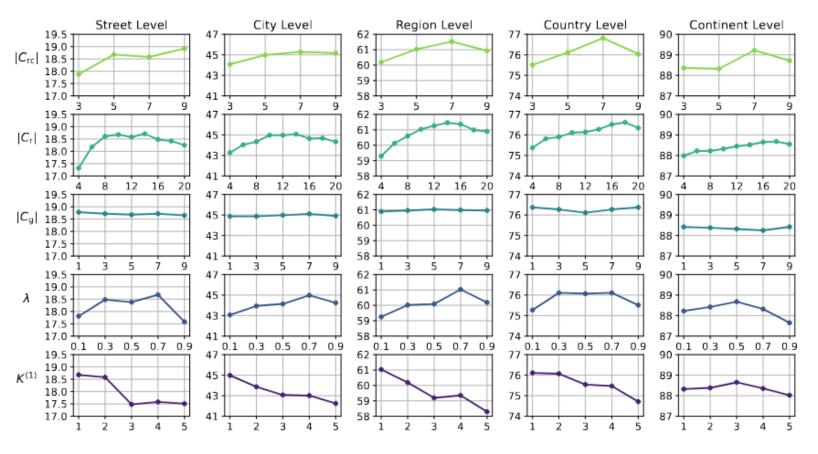
Table 1: **Main results** on IM2GPS3K and YFCC4K. For all metrics, higher is better. The best-performing results are highlighted in **bold**, while the second-best results are <u>underlined</u>. Δ represents the relative improvement of our method over the best baseline.

Methods		IM2GPS3K					YFCC4K				
		Street 1km	City 25km	Region 200km	Country 750km	Continent 2500km	Street 1km	City 25km	Region 200km	Country 750km	Continent 2500km
[L]kNN, sigma=4 [1]	ICCV'17	7.2	19.4	26.9	38.9	55.9	2.3	5.7	11	23.5	42
PlaNet [24]	ECCV'16	8.5	24.8	34.3	48.4	64.6	5.6	14.3	22.2	36.4	55.8
CPlaNet [15]	ECCV'18	10.2	26.5	34.6	48.6	64.6	7.9	14.8	21.9	36.4	55.5
ISNs [55]	ECCV'18	10.5	28	36.6	49.7	66	6.5	16.2	23.8	37.4	55
Translocator [25]	ECCV'22	11.8	31.1	46.7	58.9	80.1	8.4	18.6	27	41.1	60.4
GeoDecoder [26]	ICCV'23	12.8	33.5	45.9	61	76.1	10.3	24.4	33.9	50	68.7
GeoCLIP [8]	NeurIPS'23	14.11	34.47	50.65	69.67	83.82	9.59	19.31	32.63	55	74.69
Img2Loc [10]	SIGIR'24	15.34	39.83	53.59	69.7	82.78	19.78	30.71	41.4	58.11	74.07
PIGEON [9]	CVPR'24	11.3	36.7	53.8	72.4	85.3	10.4	23.7	40.6	62.2	77.7
G3 [14]	NeurIPS'24	16.65	40.94	55.56	71.24	84.68	23.99	35.89	46.98	64.26	78.15
GeoRanker	Ours	18.79	45.05	61.49	76.31	89.29	32.94	43.54	54.32	69.79	82.45
Rel. Improvement	Δ	$\uparrow 12.9\%$	↑ 10.0%	↑ 10.7%	$\uparrow 5.4\%$	$\uparrow 4.7\%$	↑ 37.3%	$\uparrow 21.3\%$	↑ 15.6%	$\uparrow 8.6\%$	↑ 5.5%

- Superior Performance (37.3% improvement on YFCC4K in Street level)
- State-of-the-art across all datasets and metrics

Methods	Street	City	Region	Country	Continent
	1km	25km	200km	750km	2500km
$rac{w/o\mathcal{L}_{PL}^{(2)}}{w/o\mathcal{C}_{neg}}$ $rac{v/o\mathcal{L}_{neg}^{text}}{v/o\mathcal{C}_{m}^{text}}$	18.48	44.61	60.96	75.61	88.28
	17.35	44.51	60.82	76.37	88.28
	18.02	43.91	60.19	76.61	88.62
w/o $c_m^{ m img}$	15.58	41.77	59.15	75.40	88.35
w/o \mathcal{C}_g	18.21	43.47	59.69	75.47	88.75
Ours	18.79	45.05	61.49	76.31	89.29

Ablation Study


Methods	IM2GPS3K						
	Street 1km	City 25km	Region 200km	Country 750km	Continent 2500km		
Random	10.04	29.72	42.17	57.82	75.24		
Top1	13.31	34.03	45.48	61.56	78.04		
Prompting	16.62	40.21	<u>54.55</u>	70.07	83.24		
Ours	18.79	45.05	61.49	76.31	89.29		

Comparison with Other Ranking Baselines

- All components contribute positively
- Removing any of the modalityaware prompt components leads to performance drops
- Without generated candidates underperforms GeoRanker
- GeoRanker is superior to Random, Top-1 Selection, and Prompting baselines.

- \triangleright Impact of candidate scales in training and inference: C_{rc} , C_r , C_g
- Impact of hyperparameters in multi-order distance objective: λ , $K^{(1)}$

Query Image

Top-5 Candidates without GeoReranker

Top-5 Candidates with GeoReranker

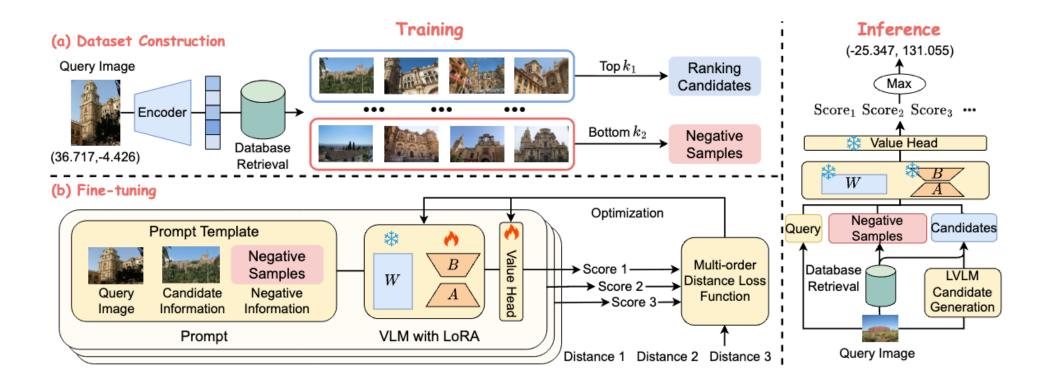
870 KM > 69 KM > 0.44 KM < 596 KM > 440 KM

0.44 KM < 69 KM < 440 KM < 596 KM < 870 KM

Case Study

Parameter	Setting			
GPU	NVIDIA L40S * 4			
Training Time	16 hours / epoch			
Total params	8,298,256,896			
Trainable params	6,881,280 (0.083%)			
Dataset Samples	100K			
Batch Size	4			
Batch Size per Device	1			
Training GPU Memory Consumption	30 GB / GPU			
VLM Backbone	Huggingface Qwen2-VL-7b-Instruct			
Deepspeed	Stage 2			

More Information on Training and Inference



01 Background & Motivation

02 Methodology

03 Experiments

- In this paper, we propose GeoRanker, a distance-aware ranking framework built upon LVLM.
- To enhance training, we introduce a novel multi-order distance loss that captures both absolute distances and relative spatial relationships among candidate locations.
- To support this framework, we construct GeoRanking, the first dataset specifically designed for spatial ranking tasks.
- Extensive experiments on IM2GPS3K and YFCC4K demonstrate the effectiveness of GeoRanker over baselines.

MP16-Pro Dataset

CityU AML Lab

Pengyue's HomePage

Thanks

JIA Pengyue

Applied Machine Learning Lab City University of Hong Kong <u>jia.pengyue@my.cityu.edu.hk</u> Department of Computer Sciences University of Wisconsin - Madison pjia7@wisc.edu